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Abstract
This is the ine/report on RAOC Project F30802.80.C0022.

Work on Ads advanced error detection has encompassed three areas of research and development.

I. Techniques of detecting common runtime errors in sequential Ads at compile.time using
verification technique.

2. High level annotation languages.

3. Runtime detection of deadness errors in Ada tasking.

Interim Report I dealt with work on runtime detection of common errors.

Interim Report 2 contains the project work on a preliminary design study for a high level annotation
language for Ada.

This final report deals with our work on runtime detection of errors in Ada Tasking programs.

This report contains a preface summarizing briefly the work in the first two interim reports. The report
then deals with the results and progress of our work on tasking error detection. This work has
resulted in a working prototype implementation of a system for detecting and diagnosing tasking
errors. Source code of this implementation has been supplied to RADC.

This system is the most promising approach to detection of deadness errors and debugging of Ada
tasking programs developed so far. Its application to evasive action programming as a standard
technique for large Ada distributed systems merits further study. It is our opinion that if this resoarch
and development is pursued along the direction taken in this project. runtime monitoring systems of
production quality standards for analysis and debugging of Ada tasking programs can be available for
incorporation into Ads Program Support Environments in the next 2 .4 years, depending on the level
of effort. Such production quality tools would essentially be developments of the prototype
experimental system developed under this contract and described in this report.
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Ada Advanced Error Detector

Final Report

Noebr4, W99 to November 5, 1982
F30602.80.C.0022

Work on Ada advanced error detection has encompassed three areas of research and development

1. Technklus of detecting common runtime errors in sequential Ada at compiletime using
verification techrniklus.

Z. ft lee anotation laquge.

IL Rundime deti~on of deadness errors In Ada aking.

Area I was our initial research focus during the first year. This research was based on previous work
on the compile-time detection of common errors in Pascal (German 81, Pascal Verifier 79]. This

• previous work was judged to be a good starting p~oint for the effort since the previous wyork app~lied to
all Algol-like languages. including the sequential subset of Ada, and therefore promisedi quic.k results
in terms of ap~plication to Ada. Common errors whose presence can be detected at compile-time

Include accessing of unitializd variables, array indexing errors, sub-range errors. etc. The
techniques developed require use of advanced mathematical verification methods such as those
implemented in (Pascal Verifier 79]. The advantages resulting ae quantified in terms of runtime
efficiency of the compiled Ada program gained by suppression of unnecessary runtime checking.
The results and details of this part of the research are treated in detail in our Interim Report No. I
dated 1 February 1961.

The ability to detect errors in the semantics of an Ada program itself, as opposed to a simple common
error due to transgressing the general semantics of the Ada language, requires development of a
specification language for Ada. Such a language must provide the programmer with sufficiently
powerful facilities to express specifications for Ada programs within a s/ntactic and semantic
framework that matches Ada Itself where possible. Given both formal specification and Ada text, it is
then possible to construct automated Interactive debugging tools such as verifiers, test case
generators and symbolic executors, for detecting incbnsistencies between the specification and code
of an Ada program. The major problem lay first in the lack of an adequate specification language for
Ada programs. Previous specfication languages, e.g. for Pascal, were judged inadequate for
application to Ada.

Part of our second year effort was therefore devoted to a design study for a high level specification
language called Anna for expressing formal specifications of Ada programs in a machine processable
form. In Anna formal comments are written with the same precision as programs. and included as an
extension of Ada programs. Formal comments ae either virtual Ada text or annotations. Since
annotations have a well-defined syntactical structure in ANNotated Ada. they can be orocessed by
tools Such as verifiers. optimizers. documentation systems and support tools for program
developmet.

In this preliminary design, we had four principal considerations.

_-L - _ . . II
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1. Constructing annotations should be easy for the Ada programmer, and should depend as
much as possible on notation and concepts of Ada.

2. Anna should possess language features that are widely used in the specification and
documentation of programs.

3. Anna should provide a formal framework within which different theories of specifying
programs may be applied to Ada.

4. Annottion should be equally well suited for different possible applications, not only for
formal verificalon by also for specification of program parts during program design and
d ev mnt

The Anna design requirements place heavy emphasis on developing the ways in which Anna can be*
used for specification and how it may be extended in the future. As a consequence of the choice of a
first order annotation language, different theories and techniques of specifying programs may be
applied using Anna. For example, previous work on assertional specification of Pascal programs
[Hoare 69, Hoare,Wirth 73, Luckham,Karp 79, Pascal Verifier 791 may be formulated in Anna since
any programming concept may be defined by the first order axiomatic method (axioms are simply
stated as annotations) and used in annotations. It is also clear that the algebraic method of specifying
abstract data types may be applied to packages in Anna.

The preliminary Anna design (Interim Report No. 2) is incomplete, and may require further extensions.
First, some possibly useful specification concepts are not provided. Consider for instance modal
operators. These have to be defined axiomatically at the moment, but it may be useful to include them
among the basic predefined operator- in later versions. Secondly, Anna does not include tasking. An
extension to include task annotations may require the introduction of new predefined attributes, for
example task type collections, and the semantics of task annotations will have to be defined.

The Anna specification language is still under development, together with the methodology for
compiling formal Anna 'specifications into Ada runtime checking code. Interim Report No. 2 dated 1
February 1982 gives a preliminary design for Anna developed under this effort. which formed the
basis for feasibility studies, and experimentation preliminary to undertaking a more complete design
effort.

As pointed out in Interim Renort No. 2, the state of basic research concerning errors specific to
parallelism in multiprocessing programs has not progressed to a stage where it is practicable to
design a formal specification language for Ada tasking. The major portion of our effort related to
detection of Ada tasking errors has therefore concentrated on runtime monitoring techniques. Our
research and development efforts in this area have been highly successful and promising.

Errors caused by failure in the parallelism of a computational system are called deadness errors.
These errors are the result of a breakdown in the communication between parallel threads of control
in a system. As a consequence, certain threads of control (or sometimes all threads in an entire
system) cannot proceed with their computations and hence become "dead". Deadness errors in
general occur unpredictably. Whether or not a possible deadness error in a system will occur during
system operation may depend on a multitude of external factors. e.g. compilation techniques. runtime
scheduling, I/O processing times and external interrupts. They are often extremely difficult to
reproduce and hence to locate by current testing methods.
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Ouing the second and third years of this research, our major effort has concentrated on development
of technology and tools for detection of deadness errors in Ada tasking. Our focus was to provide
tools for instrumenting tasking programs so that deadness errors could be detected and diagnostics
supplied to the programmer for debugging purposes. This effort has resulted in a significant
breakthrough in the area of advanced error detectors for parallel processing.

(i). A transformational method for instrumenting Ada source text in order to monitor for deadness
errors In tasking was defined. This method applied to errors due to Ada rendezvous failure. A
preliminary paper was published in the 1982 Ada Symposium, [German,HelmboldLuckham 82].

(/0). An abstrat method of representing Ada task rdezvous states and detecting certain kinds of

deadnes errors was also developed and published in the 1982 Ada Symposium,
[Gormanlfembold,Luckham 82].

(i). The transformatio instrumentation method was extended significantly to enable detection of
deadness errors due to termination failures in Ada tasking. This entailed monitoring of task
dependency information (see this final report).

(iv). The transformational instrumentation method was extended significantly to enable monitoring of
information for diagnostic description of deadness errors sufficient to enable the programmer to
locate the source of an error in the Ada text (see this final report).

(v). The more developed transformational instrumentation was implementad as a Snobol
preprocessor for Ada source text (see this final report, Chapter 4).

(vi). A method of monitoring tasking information supplied by instrumented Ada programs (i.e.,
programs to which the Snobol preprocessor has been applied) and detecting errors and
supplying diagnostics was developed and implemented in Ada. This Ada prcgram, consistng of
a package and a task is referred to as the runtime monitor (descbed in this final rn -rt,
Chapter 3).

(vii). Testing of our runtime monitoring system (preprocessor and monitor) on Ada programs led to an
experimental development of it for application to evasive action programming (see this report).

(vii). The monitoring system was demonstrated at Stanford University to RADC representatives in 13th
and 14th July 1962.

Ox). Snobol source text of the preprocessor and Ada source text of the runtime monitor were
supplied via ARPA net to the RAOC project monitor on December 1982.

This final report contains a theory of deadness errors upon which our runtime detection methods are
based, an overview of our prototype runtime monitor and preprocessor designs. and examples of
experiments. This system is the most promising approach to detection of deadness errors and
debugging of Ada tasking programs developed so far. Its application to evasive action programming
as a standard technique for large Ada distributed systems merits further study. It is our opinion that if
this research and development is pursued along the direction taken in this project, runtime
monitoring systems of production quality standards for analysis and debugging of Ada tasking
programs can be available for incorporation into Ada Program Support Environments in the next 2- 4
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years, depending on the level ot effort. Such production quality tools would essentially be
developments of the prototype experimental system developed under this contract anid described in
this report.

Professor David C. Luckham

Principle Investigator



1. INTRODUCTION

Errors caused by failure in the parallelism of a computational system are called deadness errors.
These errors are the result of a breakdown in the communication between parallel threads of control
in a system. As a consequence, certain threads of control (or sometimes all threads in an entire
system) cannot proceed with their computations and hence become "dead". Deadness errors in
general occur unpredictably. Whether or not a possible deadness error in a system will occur during
system operation may depend on a multitude of external factors, e.g. compilation techniques, runtime
scheduling, I/O processing times and external interrupts. They are often extremely difficult to
reproduce and hence to locate by current testing methods.

Deadness errors have been described in the past by concepts such as deadlock, blocking, and
starvation. These early concepts provided meaningful classification of certain kinds of errors that
could occur in 1960's vintage parallel (or pseudo parallel) systems such as simple operating systems.
However they are too vague for describing the kinds of deadness error that can occur in a parallel
system implemented using the multi-tasking facilities of Ada. For example. if a system uses dynamic
activation of tasks, the number of active tasks at any time will be a function of what the system is
doing, and may not be determinable in advance. Names can only be assigned dynamic3lly to new
tasks. In such cases, a runtime diagnostic such as "tasks 25, 37, and 121 have ceadlocked" will not
be very helpful because the dynamically assigned names. 25, 37, 121 have no meaning related to the

system source text. Additional descriptive information such as the Ada types of tasks must be
provided. Before we can expect to develop an ability to deal with deadness in future parallel systems.
we must first provide adequate methods of classification and description.

In order to deal with deadness in Ada or other languages of.similar complexity, it is useful to divide the
problem into three sub-problems: 1i) detection, (ii) description, and (iii) avoidance. Detection involves
recognizing a dead state, and usually requires less information than description. Description involves
providing sufficient information to locate the source of an error in Ada text. Avoidance involves both
style guidelines for constructing error-free systems, and programming techniques foE evasion of
imminent errors at runtime.

In this paper we investigate the application of runtime monitoring methods to these three sub.
problems. Alternative methods of eliminating deadness errors based on static analysis at compile
time are not addressed in this paper. So far, the known static analysis methods are very difficult and
time-consuming (Taylor 82].

In Chapter 2 a set of concepts for classifying deadness errors in Ada tasking is defined. These

concepts are derived from the informal semantics of Ada tasking given in [lchbiah et al. 82]. They
form a complete set in the sense that an operational description of Ada tasking can be given using
only these concepts. The description of our implementation in subsequent chapters is based on
these concepts. However, we feel that our present set of concepts should be treated as tentative. It is
possible to define other complete sets of concepts. Alternative concepts with advantages over the

- present set may emerge as experience in this area accumulates.

Our monitor system has two parts: (1) a separately compiled runtime monitor written in Ada. and (2) a
preprocessor that transforms Ada source text so that necessary descriptive data is communicated to
the monitor at runtime. The result of applying the pre-processor to any legal Ada program is a
modified program which is again a legal Ada program and contains the monitor. This monitor system

I i*



7i

is intended to monitor sufficient information about tasking activities at runtime to (I) detect a very
broad class of deadness errors, and (ii) provide descriptive information about a dead state when it is
certain that the state will occur, and prior to that state actually occurring. Some of the basic
transformations and an abstract monitoring method were previously described in
(German,Helmbold,Luckham 82]. This established the essential ideas behind our implementation but
dealt only with detection of deadness and applied to a more limited class of errors.

An Ada Implementation of the runtimo monitoring system is described in Chapter 3. This description
encompasses (a) the kind of descriptive data about tasking states that is monitored, (b)
representation of the descriptions and processing to detect errors, and (c) structural design of the
monitor. The monitored data must be sufficient both for detection of deadness and for providing

diagnostics. The actual monitor data structures and procedures must correctly implement
representations of scheduling utatee (as defined in Chapter 2); any monitor procedure must always
terminate, preferably as quickly as possible. Structured design of the monitor is an important
consideration both for runtime efficiency and to reduce recompilation if the monitor system is altered
for a special application.

Ci,. oter 4 describes the preprocessing transformations applied to Ada source text. The description
deals with the complete set of transformations that are currently implemented. These transformations

ensure that the mcnitored program will pass sufficient information about intended tasking operations
(initiation. rendezvous, termination, etc.) to the monitor to enable it to detect a wide class of deadness
errors. including. e.g., deadness due to inability of dependent tasks to terminate. The fine details are
complex; our description is therefore presented informally and relias on illustiative examples. The
preprocessor is implemented in SNOBOL.

Ch lpter 5 deals with the correctness of our method. By this we mean that the addition of the monitor
does not introduce new deadness errors. and that the monitor correctly describes an error when it is
certain that the error will occur if the computation continues normally. Oiscussion of these issues is
informal and proofs are outlined. Our intention here is to indicate how a formal proof can be given; a
fully formal treatment is beyond the scope of this paper.

The monitoring system may be used not only for recognition of errors but also for evasive action
programming. Essentially, the monitor "knows" a deadness error is certain to happen (if the
computation continues normally) before it occurs. Warnings (e.g. Ada exceptions) may therefore be
propagated to the monitored program before the error occurs, thus enabling it to evade the error by
taking some abnormal course of action. Such evasion may be temporary in that the error may
become imminent again, but the program can continue useful operation for a time. It may then have
to evade again, and so on. These evasive action techniques need to be investigated and developed
since they represent a very useful method of keeping large multi-tasking programs in operation.
Eventually one would hope to be able to determine at compile time that such programs are free of
deadness errors, but until the necessary theory of static detection is developed, evasive action may
become just as important a way of dealing with deadness errors as testing methods are for most other
kinds :f errors today. Indeed, if a system has to deal with unreliable elements, as happens in many
practical applications, evasive action techniques could become a standard programming practice.

Some techniques for evasive action programming are given in Chapter 6. These are very modest and

represent just a beginning. Examples of monitoring experiments for debugging and evasive action
are given in Chapter 7.

... 0h



9 1

The current experimental monitor is programmed in Ada and compiled using the Adam compiler at
Stanford [LUckham at al.,ADAM 81]. Since Adam does not support all of Ada82, some parts of the
monitor implementation have used circuitous techniques. This is especialy evident in our
implementation of evasive action; warnings are Implemented by means of extra parameters of the
monitor entries instead of exceptions because Adam does not support exception propagation during
task rendezvous.

There is a fundamental philosophical question as to whether such monitoring should be part of the
runtime supervisor package or part of the Ada source text. Basically, it is too early In the development
of our understanding of deadness errors to take a stand on this isue. Both approaches have
advantages. Supervisor monitoring can make use of scheduling information already present in the
supervisor and therefore does not duplicate this information at runtine. However, perhaps standard
runtime supervisory packages should not be burdened by requirements to produce debugging
information at present, especially since we do not yet know what information is adequate in general.
Source code monitoring has many advantages such as the abllty to tilor detection Information and
wainings to a particular application program. The main disadvantage of this approach lies in the lack
of a fundamental task identifier type in Ada itself, but this is a problem in programming other resource
scheduling applications in Ada too [Luckham et al.,ADAM 81].
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2. DEFINITIONS

2.1 TASK STATUSES

According to the semantics of tasking [ichbiah et al. 82] a task may be in any one of the following
statuses; a status has information associated with it

1. Running: a task in Ot status may be run. This Is the only status in which a task may run.

2. Accepting: a task t is waiting for an entry call at an accept statement or at a select
statement that dow not have an else clase terminate alternative, or a delay
alternatimve. The et of entre being waited for (.e.. the entry of the accpt or those
antr coo.esponding to open c altrnatives of the sehnt associated with the
accepting status of t.

3 Select-terminate: a task t is at a select statement with a terminate alternative; the set
of entries corresponding to open accept alternatives and the set of tasks dependent on t
are associated with the select-terminate status of t.

4. Calling: task t has issued an entry call, s.e, to task s, which is neither conditional nor
timed. The task s and the entry a are associated with the calling status of t.

5. Block-waiting: task t has reached the end of an inner block or subprogram and is
waiting for the tasks dependent on the inner block to terminate: the set of tasks
dependent on the block or subprogram is associated with the block-waiting status of t.

6. Completed: task t has completed. The set of tasks dependent on t is associated with
the completed status of t.

7. Terminated: task t is terminated. No additional information is associated with this
status.

& Select.Dependents-Completed: task t Is at a select statement with an open terminate
alternative and all dependent tasks have reached either terminate status or Select-
Dependents-Completed status. The set of entries correponding to open alternatives of
the select statement is associated with this status.

Blocked: A task in any of the statuses 2 -8 is said to be blocked.

This set of statuses and associated information is sufficient to describe that part of the Ada semantics
of task rendezvous that determines the schedulability of a task. Such a description may be given by
means of a status change diagram indicating how the semantics of rendezvous determines the status
changes of a task. Some status changes of task t are direct in the sense that the action of t itself
causes the change; other changes of t are indirect in the sense that they are caused by the action of
another task.

.1 _______________________________

CIA- I ' 'I'I I
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Direct Status Changes:
running -calling
running -accepting
running -suloct.,terminate
running -block..waitlng
running -completed

Indirect Changes:
calling running
running calling
accepting -. running
select-terminate running
blockwait -. running-
3eloct~terminate -. select..depndontscompl eted
solectdependilnts~completod -'terminated
selectdependemts~gompleted running
completed. -. terminated

Notes.
A task executing a delay statement is in status running. The indirect status change from accepting to
running occurs when the entry call is issued rather than when the rendezvous is initiated. A task
changes from status running to calling after having issued a conditional or timed entry call only if the
call is accepted (this status change is therefore indirect). A task which executes a select statement
will usually change from running to accepting. A task which executes the else part (or delay
alternative) of a select statement remains in status running.

2.2 SCHEDULING STATES AND DEADNESS ERRORS

For a given input a program P may have many different possible computations. Each possible
computation is the result of a legal Ada scheduling of the runnable tasks. Here, the word
"scheduling" is used In a very broad sense to reflect simply the order in which changes of status
occur among the individual tasks of P. Different orders may result from different scheduling
algorithms for multiplexing tasks on a single CPU, or- from -differing speeds of CPU's in a
multiprocessor system. The details of the underlying scheduling do not concern us in this paper. We
we Concerned only with observable dfferences In the sequence of status changes. It should be
noted that different schedulings may result in different voupt from the computation, e&g. in the case
where, P Is monitoring Its own status changes.

*Task identiflers.Each task that is activated during a computation of program P is assigned a unique
name called its identifier. It Is assumed that a task can access it own identiier and the identifier of
any task that is visible to It.

Task-Status Pairs. A tak-status pair Is an ordere pair consisting of a task Identifier as first
element and a status as second element (notation: 0t,0).

Scheduling States. A scheduling state of a programn P is a set of task-status pairs such that each
task of Pis the first element of exactly one pair. If (t,s Iaamember of state S, then tusk thas status
s in S.
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Execution. An execution of P is a sequence of pairs consisting of a task identifier and a sequince of
simple statements such that

1. the task identifier of the first pair identifies the main program;
2. the task identifier of the nth pair (tn cn> has status running as a result of the execution

of the statements in the previous pairs by the named threads of control:
3. As a consequence of the execution of the statements in the previous pairs In the

sequence by the named threds of control, t. may legally execute the simple statements
in c. In that order, and its status does not change until possibly after the last statment of

Notes:

Executions correspond to computations of P on a single CPU. An execution is an Interleaving of the
sequences of simple statements executed by the running threads of control; it is convenient to
consider end as a simple statement in the definition of execution.

Statements appear in executions in positions corresponding to their normal termination. For
example, if task t calls procedure p, then the simple statements executed during p's execution will
appear in an execution pair for t before the procedure call. Since a change of status from running
occurs during execution of a tasking statement, and possibly back to running again at the
completion of that statement, tasking statements will appear at the beginning of sequences in pairs.
The subsequence of pairs representing a single task's executions contains simple statements that the
task must execute in a (according to Ada semantics) legal order of execution.
An execution can be constructed from an actual computation in the obvious way by writing down the
identifier of the running thread of control at any time followed by the simple statements that it
executes. Conversely any execution corresponds to an actual computation on a single CPU under
some scheduling. Since the semantics of Ada is independent of the number of CPU's. definitions
based on this imposed linearization of tasking computations are valid generally for any method of
scheduling computations.
The concept ot execution described here can be given a formal definition in terms of transition rules
similar to the operational semantics for Ada in (U 82). We may therefore use the notions
computation" and "execution" interchangeably in the following discussion.

Scheduling. A scheduling is an activity which may change the execution sequence associated with a
conwputational P given a fixed input.

Notes:
This concept of scheduling is very broad. It includes the Implementation of the select statement,
relatve epeeds of pr-essors computations of the runtime host environment, I/0, and any other
activity that may change the order in which different threads of control change statuses.
A program P, given a fixed input, may have many different possible computations, each of which is
the result of a change of scheduling.

Sequences of Scheduling States A computation of program P has an associated linear sequence
of scheduling states. All tasks are activated in running status. Each new state in the sequence results
from the previous state by a status chng by one task. Simultaneous status changes are ordered
arbitrartly, an indirect status change follows the status change of the task causing it.

Deadness Error. A deadness error is a scheduling state occurring in a computation of P in which a
subset of tsks we in blocitked statuses but not terrinated, and there can be no subsequent
scheduling stat in a possible continuation of that computation of P from that state in which the
stass of the subset have chwe.
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Potential Deadness Error. A program P has a potential deadness error.if there is an input and a
possible computation such that the associated sequence of states contains that error.

Notes:
A blocked state is a scheduling state in which no task has status running, no (indirect) status changes
are possible, and not every task has status terminated.
A deadlocked smt Is one in which a subset of tasks are all in status calling and the calls are to entries
of mo the aubmet.
Deadness errors include global blocking In which sll tasks are blocked, circular deadlock, and errors
arising when subem at lasks block. Implementation dependent errors, e.g. failure of an entry call to
be serviced due to a particular fmplemtton of arbitrary selection (starvation), are not included.

2.3 MONITORED PROGRAMS

Runtime monitoring for deadness errors involves adding a monitoring task M to a given program
P. The text of P is transformed so that tasks have unique identifiers and may identify each other and
communicate status changes to M. The resulting program. P', is called a monitored program. It is
important to establish that the addition of M to P (to form P') does not change the set of potential
deadness errors of P.

The next set of definitions are made in order to establish a sense in which two programs P and P' can
be said to possess the same potential deadness errors. As a special case we define what is meant by
saying that the same deadness error occurs in two distinct computations of P. These definitions are
complicated by the possible dynamic creation of tasks in Ada and corresponding dynamic allocation
of task identifiers.

correspondence: We assume there is a textual correspondence between P and P' such that

1. every declaration in P corresponds to a declaration in P' of the same kind,
2. every object in P corresponds to an object (or component object) In P' of the same kind,
3. every statement in P corresponds to a statement in P' of the same kind,
4. the correspondence is consistent, i.e., declarations and Statements in a program unit U in

P correspond to declarations and statements in the-corresponding program unit U' in P'.

Notes:
Any abject declared in P corresponds to an object declared In P of the same kind, in particular tasks
correspond to taks. However, not every declaration or staement In P' need have a correspondence
in P.

Corresponding Executions. Let E and E' be executions of P and P" respectively. Assume there is a
textual correspondence between P and P'. Then E and E' correspond if all task-code pairs of E can
be placed In a corresondence with tlask-code pairs in E' according to the following inductive test
Suppose that the first n pairs of E correspond to pairs (in the same order) among the first m (m _: n)
pairs of E'. and that ther is a one-one correspondence between all the task identifiers that have
occurred so far in E and a subse of thoe in E'. Let the nth. and mth. pailrs be t n, Cn >in E and tm,

1. if all the statements of c,, are in (1-1) correspondence (under the textual relationship
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between P and P') with the statements of cn In the same order, then tn and tm must
correspond. If neither yet corresponds to any task, they are placed in correspondence (in
E and E'), and the test proceeds to the next pairs in E and E';

2. If no statement in c, has a textually corresponding statement in P then <tn, Cn> is
compared with the next pair in E';

3. If neither of the first two cases holds then the correspondence test fails.

Notes:
if two executions E and E' correspond then the task identifers In E are In one-one correspondence
with a subset of the task Identifiers in V. If t n E corresponds with r in E' then t executes code
corresponding to some of the code executed by t, possibly interspersed with code in E' which has no
correspondence in L Thus, In a general sense corresponding task Identifiers are names for threads
of control tha execute th sane subcomputetions.(restrctkd to statments of P). E' may have tasks
that do not correspond to any task in E; ths is a consequence of the ssumption that the textual
correspondence between P and P is "into'. Le., P' may be Obigger" than P.

Equivalent Scheduling States. If E and I' are corresponding executions of P and P' then
scheduling state S of E is equivalent to a scheduling state S' of E' if for every task-status pair <t, s>
in S the task-status pair t, s> is in S' where t and t' correspond in E and E', and all other tasks of S'
are blocked.

Same Potential Errors. P and P' have the same potential deadness errors if for every potential
deadness error of P occurring in execution E, them is a corresponding execution E' of P' in which an
equivalent deadness error occurs, and conversely.

Notes:

'Conversely" means the following: if a deadness error S' occurs in execution E' of P' then there is an
execution E of P such that E and E' correspond and a deadness error S equivalent !o S' occurs in E.

Non Interference. A task M is said not-to interfere with a program P if:

1. its addition to P forms a legal Ada program P' and defines a txtual correspondence
between P and P-,

2. P and P' have the same set of potential deadness errors.

Notes;
M does not Interfere with P If and only if Its (legal) addition to P does not introduce any now potential
deadness errors nor remove any potential deadness errors
The definition of non-interference is week in the sense that P and P we not required to compute the
same values or to be equivalent in any of the usual senses. The terminology "addition to P" is left
undefined; it may involve changes to the text of P s well s the addition of the text of M; it is required
that the "addition" sets up a textual correspondence between P and P.

e
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3. DEADNESS MONITOR.

The monitor detects deadns errors based on information received from the preprocessed program.
In our implementation this Information consists of changes of statuses and associated information
(ame Section 2). Thes monitor maintains, throughout fte execution of the modified program, a
"picture" of the program's scheuling state This picture is generally updated and checked for
deadness errors wheniever Informaition is received from the program. In addition to detecting
deadiness errors, the monitor alma provides fad Witee for tracing status changes, querying fte current
picture" and underlngk evealveamdon to avoid a deenees error.

3.1 THIF MONITOR'SSRUTR

Our monitor Is implemens dWi two parts, a taok and a package The task is Inserted into the program
by the preprocessor. The package is designed to be compiled separately it contains the monitor's
data structure and fth procedures that act upon it. This organization allows separate compilation as
well as protecting fth monitor from simultaneous access.

The package is separated from the program for efficiency reasons. It is compiled only once. and then
linked each time a program requires it Even if several programs are using the monitor, only one copy
of the monitor needs to be kept on disk. Separately compiling the monitor also eases the burden on
fth compiler, the AIDAM compiler had .trubles dealing with the monitor and a moderate sized

program at the same time.

The monitor tak's main purpose is to transmit data to the monitor package. The preprocessed
program communicatee the status change information to the task via the Ada rendezvous
mechanism. The ak the calls the appropriate procedure of the monitor package. Buffering the
Information through a teak in this way ensures that only one ftread of control (the monitor task) can
update the monitor's data structure at a time. The monitor task also seem to provide a convenient
place to custooize tfe monitor for a specifc application, since the monitrs internal workings are
hidden I fte paicksa We hav create an Irderactive versli of th monitor in this manner.

Structure oui

package NONITORODATA-PACKAGEt Is
-- Data structures omited

procedure ACCEPTING (SERVER : In TASK-10:
ENTRYNAME :In STRING:
DEAOLK..FLAG :out BOOLEAN);

procedure UNBLOCK (SUBJECT : In TASK...ID):
end NON ITOR_0.ATA..PACKAGE:

task body MONITOR Is
booin

NONITORODATA_.PACKAGE. IN IT; -- InItfalze the monitor package.
while not NONITOR..OATA..PACKAGE. OME loop

Loop until all other task# have terminated.
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select
-- Simply accept a call from the program and
-- relay the information to the monitor.

accept ACCEPTING (SERVER : In TASK_1D;
ENTRYNAME : in string;
DEADLK_FLAG

MONITORDATAPACKAGE.ACCEPTING (SERVER.
ENTRYAME,
OEADLK_FLAG);

end;

or

accept UNBLOCK (SUBJECT : In TASK_1D) do
MONITOR_DATA.PACKAGE .UNBLOCK (SUBJECT);

end;
end select:

end loop;
end MONITOR:

3.2 THE MONITOR'S PICTURE

The monitor maintains, at runtime, a picture of the program's scheduling state. This picture consists
of status and associated information for each task, entry point information, dependency information,
and several global (to the monitor package) counters. This picture is incomplete in that it does not
reflect any interactions with the monitor task. All calls to the monitor task are assumed to be promptly
answered and completed. The picture may not even be strictly accurate as calls to the monitor may
be sermiced in an order other than that in which the status changes occur.

3.L.1 TASK UIFORMATION

Each activated tak of Vie original rogram is repreeented by a record in the monitor's data structure.
This record contais s= and other Information pertaining to the task.

type TASK_,RECORD ia
-- Each task will have a record of this type to
-- hold information associated with the task.

record
TASK_NAME : MONAMETYPE;

-- A user-defined output name.
STATUS : TASKSTATUS;

-- The status of this task.
CALLEDTASK : TASKID;

• The task that this task has issued an
•- entry call to.

CALLEDENTRY MONNAME_TYPE;

.K . - ........-.---
.. .6



-- The-entry being called.

PARETTSK :TAS-10 Tho task that tils one depends on.
DEPENDENTS :IDPTR;

-- A list of tasks depending on this task.
NUN_.WAITFOR :INTEGER:

-- The number of tasks that need to finish
-- before this one can proceed.

LIST-PTR : EUT.PTR:-
-- A pointer to the flat of entries in this task.

TRACE : BOOLEAN;
-- True IFF trace information
-- on this task Is to be printed

The first Ried contains fth task name. This string Is used only to identify the task to fte user, and has
no internal meaning. The second field contains the, task's status (se Section 2-1). The next two
Hoelds contain associated information for status calling; the task and entry called. Following these are
fields containing dependency information: a list of dependent tasks that this task is waiting on: the
number of those tasks that have not terminated. and this task's parent (see 3.2.3). An additicnal field
holds a pointer to the list of entries associated with the task. The last field contains a fI j indicating
whether or not the task's Status changes should be traced. These records are stored in an array, and
indexed by task 10s.

3.2.2 DJNTRY INFORMATION

The monitor creates entry records for each entry point as it rinds out about them (i.e.. just before they
are referenced at call, accept and select statements). These records contain the unique string
representation for the entry created by the preprocessor, the number of tasks calling the ontrj and a
HERE.FLAG, indicating if the task is currently waiting for (ready to accept) a c.-1l to the entry. All of
the records for a tak's entries awe stored in an unordered linked list referenced from the task's
recod

3.2.3 OEPWOIMY INFORMATION

Keeping tac of dependenicy iformation powe specil problem for the monitor. According to the
Ada semantics, each task directly depends on some master (a block, subprogram. task, etc.). This
masteir is usually the scope where the task Is declared, howieveir tasks creaWe by an allocator canl
depend on the Scope where the acess type was declared.

We define the sons of task t (or main program) to be those tasks which:

1. dlrec depend on t;
2. directly depend on one of t's Inner blocks; or
3directly depend on a subprogram (or subprogram Inner block) elaborated by t.

If askIsthe SON of talkt. Owentask tis the father oftask a. This fathor-son relationship formseatres
Stucure
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The preprocessor inserts declarations for a list of directly dependent tasks in each block, task and
subprogram of the original program (see.Secton 4.3). An additional list, containing all of the task's
sons, is declared in each task body. When new tasks are created, their IDs are added to the
appropriate lists during the AODOEPENOENTS monitor call.

When task t is ready to terminate, it passes the list of all its sons to the monitor. The monitor sets the
PARENTTASK field in the task record of each task on the list to t's ID. The monitor stores the number
of sons t have not yet finished In the ta NUN_VA TFOR field.

By checking to se If task ta NUN_VAITFOR field Is 0, th monitor can easily see If all the sons of t
have finished. When this occurs, task t is terminated, along with all of ift sons still at select
statements with terminate alternatives. The monitor then checks the FATHER field for task t. If it is
non-emty (contains a valid task I) tw the PARENTTASK's NUMWAIT_FOR count is decremented.

The same algorithm is used when a task attempts to leave a block, except that the list of dependents
contains only those tasks that directly depend on the block.

Notes:
It is important to set the PARENTTASK field of a task only when the father is waiting on that task.
Otherwise, the task may decrement the PARENTTASK's NUM_WAITFOR count before the
PARENT-TASK is waiting for it (e.g., if the f ather was waiting on an inner block).

It is important to have the monitor modify these lists of dependents. When a task is attempting to
torminate, it passes the monitor a list of its dependents. If some other task creates a new dependent
of the first task, then the change in the list of dependents must be communicated to the monitor. The
monitoi checks for this situation whenever it updates a dependency list. The monitors mutual
exclusion properties are used to ensure that two tasks are never simultaneously updating a
dependency list.

3.2.4 GLOaAL VARIABLES

Three vadables are used to enable the monitor to efficiently detect global blocking. The monitor
maintains counts of.

1. the number of tasks that have been activated;
2. the number that are blocked; and
3. t number that have terminated.

If the number of tasks that are terminated is equal to the number of tasks that have been activated
then the program has terminated. Otherwise, if the number of tasks that are blocked is equal to the
number of tasks that have been activated, then global blocking has occurred. These checks are done
every time a task becomes blocked in the monitor's picture (for any resson).

An additional boolean variable, DONE, Is used to inform the monitor task that all of the other tasks
have terminated. This variable is declared in the visible part of the monitor package so it can be
examined by the monitor task.

Below is the visible part of the monitor package and the specification for the monitor task.

-- Data structures used by the monitor.

.. .. . ..11 I



-- uo oe compiled separately.)

with OTTYIO -- Adam 1/Opackagi.
package MONITOR_DATAPACKAGE Is

-- Bounds and data structures used by
-- the monitor.

STRING-LENGTH : constant INTEGER :- 5;
MAXmUMTASKS : constant INTEGER := 15;
TASKLINIT : constant INTEGER :a (MAX_NUTASKS - 1);

subtype TASK_1D Is INTEGER range- I .. TASK-LrMIT;
ALLTASKS : constant TASK-_O : u - 1;
NULLTASK : constant TASK_10 :'- 1;

subtype IONNANE_TYPE Is string (1 .. STItINGLENGTH):
NULL..IANi : constant NON..AETYPE :- "UNILO";

type ENTRYREC;
type ENTRYPTR Is access MONENTREC;
type ENTRYREC Is

record
NAME : MONNAME-TYPE;
NEXT : ENTRYPTR:

end record;
-- Used to pass the monitor lists of
-- entry points.

type IODREC:
type IDPTR Is access MONrD_REC:
type IDREC Is

record
ID TASK-1D:
NEXT : .D..PTR'.

-- Used to pass the monitor lists of
-- task I0's

end record: -- Monitor package procedures are omitted
-- since they correspond one - one with

monitor task entries described below.

OGNE : BOOLEAN :- FALSE;
end MONITORDATAPACKAGE; - The DEADLOCK MONITOR task itself.

-- (This is inserted into P.)

use MONITOROATAPACKAGE;

task MONITOR Is -- Group I below are called to notify the
-- monitor of status changes that are about
-- to take place of activation of new tasks,
-- and of task dependencies (see Section 3.1).

entry NEWTASK (TASK_NAME : in string:
NEW_D : out TASK._1);

entry AOODEPENDENT(FATHER In TASKID;

MOP-
!Ile
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SON :in TASK_10I);
LISTI :In out ID_.PTR:
LIST2 :In out 10_PTR;

entry CALLING (CONSUMER :In TASK-ID;
SERVER :in TASK-ID;
ENTRYNAME :in STRING.
OEADLKFLAG

entry ACCEPTING (SERVER :In TASK_10;
ENTRY-NAME : In STRINGJ;
DEAD LXFLAG

entry SELECTING (SERVER In TASK_1D;
ENTRYLIST :In out ENTRYPTR;
TERMINATE-.FLAG :In BOOLEAN;
DEPENDENTS : In IIDPTR;
OEADLKFLAG : out BOOLEAN);

entry STARTRENDEZVOUS (CONSUMER : In TASK_1D;
SERVER : In TASK-10;
ENTRY-..NAME :in STRING);

entry END_.RENOEZVOUS (CONSUMER :in TASK-10.I:
SERVER :in TASK-1D;
ENTRY-..NAME :in STRING);

entry END.BLOCK (CONSUMER :in TASKID;
DEPENDENTS :in ID..PTR;
DEADLKFLAG

entry ENDTASK (CONSUMER :Irv TASKID;
DEPENDENTS :in 1DPTR;
OEADLKFLAG out BOOLEAN);

-- Group 2 provides some facilities for
-- tracing statuses and schedulding states.

entry PRINT;
entry TRACE (SUBJECT :in TASKDO;

FLAG :In BOOLEAN);
-- Group 3 is used to facilitate evasive action.

entry QUERY (SUBJECT in TASKID0;
CALLED..TASK. ENTRYCALLEO out string;
WAITING_.AT out ENTRY_.PTR);.

entry UNBLOCK (SUBJECT In TASK_1D);
end MONITOR;

3.3 STATUS CHIANGES

Calhs to the majority of monitor entries are placed in the original program according to the
7 transformation rules given in Section 4. These calls notify the monitor of impending status changes.

and any associated information (as defined for each status in Chapter 2). Such calls typically involve
modifying themoior'spicture. Below we describe the necessary action that the monitor must take
on each call.

Evasive action in this implementation must make use of the DEADLK..YLAG formal parameter of entry
calls. All monitor calls which can block the task issuing the call have a SLOCKEDSTATEFLAG actual
parameter in addition to those mentioned below. This flag is returned with the value true if and only if
a blocked stats results in the monitor's picture from the call. For more details on evasive action see
Section 6.The OEAOLKFLAG parameter will be ignored for the remainder of this section.
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The NEWTASK entry informs the monitor that another task has been created. The monitor creates a
new task record, initializing it with the passed task.name and status running. The remaining fields are
set to null values. The record is stored in the next available position in the array. The index where it
is stored is returned as the NE_ ID.

Notes:
Task 10's cannot be implemented by access type objects accessing task objects because of the
strong typing of Ada. The monitor type declarations would have to be changed (and the monitor
recompiled) for each monitored program P. The task type declarations of P would have to be placed
in the most global declarative part and still the problem of a task being able to find its own name
would remain.

The ADO -DEPENDENT entry is used to put tasks on dependency lists. When the monitor receives
this call, it pclaes SON on tde two lists. If one of the LISTs is a part of the PARENT's associated
information, then the OEPENDENTS list and the NUR_ArT_FOR count in the PARENT's record are
updated accordingly.

The CALLING entry is used to tell the monitor that a task is about to issue an entry call. When the
monitor accepts this entry it undertakes the following actions:

1. Change the CONSUMER's status in the monitor's picture from Running to Calling.
2. Increment the queue size (in the monitor's picture) associated with the called entry.
3. If, in the monitor's picture, the SERVER is in status Accepting, SelectTerminate, or

SelectDependentsCompleted, and it is waiting on the called entry then the SERVER's
status is changed to Running and the NUMBLOCKED count is decremented.

4. The NUM BLOCKED count is incremented due to the consumer becoming blocked.

The ACCEPTING entry is used to inform the monitor that a task is about to execute an accept
statement. Upon receiving this call the monitor examines the queue-size for this entry. If it is zero,
then the SERVERS status is changed to Accepting, the HEREFLAG for the entry is set, and
NUM_BLOCKED is incremented.

SELECTING is called when a task is about to execute a select statement, which may contain
terminate alternatives, as well a number of open accept alternatives (see Section 4.4.3). The
ENTRY_LIST parameter contains a list of all the entries that can be accepted. The DEPENDENTS
parameter holds a list of all the task's sons. The TERM INATEJLAG parameter will be true only if there
is an open terminate alternative. If some of the entries on ENTRYLIST have non-empty queues (in
the monitor's picture), then the SERVER remains in status Running. Otherwise, the HEREFLAGs for
all the entries on the list are set and the TERMINATE-FLAG is checked. If it is true, then

1. The SERVER is placed in status SelectWith.Terminate.
2. The SERVER's DEPENDENTS field is set to the passed DEPENDENTS list.
3. If the SERVER's PARENT_TASK field contains a valid ID, then the PARENTTASK's

NUM_...AITJOR count is decremented and checked for 0.

If the TERMINATEFLAG is false, then the SERVER is put into status Accepting. If the SERVER is now
blocked, then NUMBLOCKED is incremented.

The STARTRENDEZVOUS entry is called at the start of all the original accept bodies of P. Upon
receiving this call the monitor does the following:

ILo
.. .. . . .. M.. . i I " I . . . . . ... ..
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1. It the CONSUMER is not in status Calling (e.g. because it issued a conditional or timed
entry call) then .the actions for entry CALLING are taken. This may cause the SERVER to
change status from Accepting to Running.

2. The queue size associated with the entry point is decremented.
3. All of the HERE-FLAGS for the SERVER's entries are cleared, as the server is no longer

waiting at any entry.

When receiving the ENO.RENDEZVOUS entry the monitor simply changes the status of CONSUMER
back to Running and decrements the NUNBLOCKED counter. The server parameter is included for
tracing purposes.

The END_BLOCK entry ha& parameters CONSUMER (the task leaving the block) and DEPENDENTS, a
Net of tasks which are dependent on the scope being left. If some of the DEPENDENTS have not
terminated, the monitor

1. Sets the FATHER field for each task on the DEPENDENTS list to the CONSUMER.
2. Sets the CONSUMER's NUMWA TFOR field to the number of tasks on the DEPENDENTS list

that have not finished.
3. Sets the CONSUMER's status to Block.Wait.
4. Increments the NUMBLOCKED counter.

The END_TASK entry is similar to the ENDBLOCK entry, except the CONSUMER is placed in status

Completed rather than Block.Wait.

3.4 DEBUGGING/TRACE ENTRIES

These entries are used to control diagnostic output for the monitor, and are placed by the
programmer in either the original or transformed Ada source code.

PRINT has no parameters. When the monitor accepts this entry, it prints out its internal picture.

Using this, a programmer can get "snapshots" of scheduling states during a computation.

A call to the monitor entry TRACE enables (If FLAG is true) or disables (if FLAG is false) trace output

for the SUBJECT. When the monitor receives an entry call whose CONSUMER or SERVER parameter is

a task with tracing enabled, then the monitor will display the call and its parameters. It is possible to

trace all calls to the monitor by using entry TRACE with parameters ALLTASKS and TRUE. Normal
tracing is restored by calling TRACE with ALL_TASKS and FALSE.

3.5 EVASIVE ACTION

A deadness error is Imminent whenever the DEADLKFLAG parameter has the value true on

completion of a monitor call. Evasive action based on testing this parameter value may be

programmed in the original source code (see Chapter 6). The two entries UNBLOCK and QUERY are
provided to assist this.

UNBLOCK has a single TASKID parameter, SUBJECT. The monitor assumes that the SUBJECT task
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will not proceed with the originally intended rendezvous, and updates its. picture accordingly, thus
"unblocking" the task. UNBLOCK can be severely misused. It should only be called from the task
SUBJECT when the DEADLKFLAG parameter has been returned true, and SUBJECT is not going to
proceed with the tasking statement that has just been indicated by a monitor call.

The entry QUERY may be used to help control evasive action routines. A task passes the monitor the
SUBJECT, a TASK-1D, and receives information about how that task is blocked. Specifically, the task
and entry that the SUBJECT is calting (it any) and the entries that the SUBJECT is accepting (if any) are
returned. This entry Is Intended to allow more intelligent evasive action by giving the task undertaking
the evasive action more information about the error.
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4. PREPROCESSOR

This section describes the preprocessor applied to the Ada text of a program P. The purpose of the
preprocessor is to introduce communication between the tasks of P and the monitor so that the
monitor is informed of any task status change in P. The resulting monitored program is denoted by P'.

The prerocessor applies a sequence of textual transformations.. Each transformation introduces
new declarations or statements. The transformations currently implemented in our present monitor
extend the set of tranmformations previously given in (GermanHelmboldLuckham 821 in two ways:
(1) the set of deadness errors detected by the monitor Is extended to Include errors involving the
inability to terminate, (2) the monitored data is exended to include data necessary to give an
adequate description of a deadne error for the purpose of debugging and evasive action. Also the
original presentation lacked discussion of many important implementation details upon which the
correctness of an actual implementation depends.

The transformations can be broken down into atomic steps describable in a formalism similar to the
presentation in [German,Helmbold,Luckham e2]. However formal description of many details (e.g.,
transformations for composite data structures containing tasks, and for parameter expressions
invoking tasking) is very complex. So here our descriptive approach is informal. We describe the
preprocessor as a sequence of four passes. First the monitor declaration and body is placed at the
beg inning of the declarative part of the main program. Following this, each succeeding pass is then
assumed to take its input from the output of the preceding pass. Each section of this chapter
describes a pass (4.1 . first pass, 4.2• second Pass etc.). We will use Pk to designate the output from
the kth pass, thus P2 is the output from the transformations described in Section 4.2.

The transformations set UP a correspondence (Section 2.3) between P and P' which is also described
informally below.

Notes:
Only the original rendezvous attempts between tasks in P are monitored; rendezvous with the monitor
itself are not monitored. All identifiers Introduced by the preprocessor, e.g. type names and variables,
are assumed not to clash with the identifiers in P.

4.1 INTRODUCTION OF TASK ID'S

Passes 1 and 2 introduce task IDs Into the monitored program. Pass I introduces data structure to
store IDa and communications of IDs; pass 2 introduces code to initialize IDs. The resulting program
has the following properties: (1) every active task has a unique ID, (2) a calling task can always
access the called task's ID, (3) a task can access its own ID, (4) within every scope the ID of the

currently executing task can be accessed, and (5) whenever an entry is called the ID of the caller is
passed to the called task.

Notes;-
The introduction of task 10s must be done carefully with regard to the Ada semantics of task
activation to avoid errors due to accessing uninitialized IDs.

Pm 1 performs the following six transformations:

t2II

.77
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1. Each task type declaration, t, Is replaced by a new task type called t;TASK followed by a
record type with the original name, t. t.ASK is obtained by the following modifications to
the original declaration, t: A new entry, SETX3D, is placed in the task type declaration,
and a new variable, MY_10, In the task body; an accept SETrO is inserted as the first
statement in the task body. The new record type, t, has two components, a task (called
TASK_OBJ) of type t.TASK and a task I.

2. Each task declaration, It, in P is replaced by a task type declaration tTASK, a record type,
t_RECORO, and a record of that type with the name, L The task type tTASK Is obtained
from the original task declaration by modifications similar to Mas stated in step1;
tRECORD has two components as above.

3. Enry ais to any task. LE may, are replaced by entry calls to the lask component of the
new ard, LTASK_OBJ. 1.

4. A new formal parameter called MY..IO of type TASK_1D is added to every subprogram
specification.

5. A new formal parameter called CALLER_D of type TASKID is added to ever/ entry
specification.

6. All calls to entries and subprograms are modified appropriately as follows: the TASK_1D
parameter of every entry and subprogram call is bound to the value of MY_10. This is
either the value of the local MYZD variable (if the call is in a task) or the value of the
formal TASK_1D parameter, MY_1O (if the call is in a subprogram).

Notes;
The 10 of the main program always has the value 0.
As. a result of step 1, all task object declarations of a task type in P will become declarations of a
record type in P1.
As a result of steps 1 and 2 all task objects occur as components of records which also contain a
TASKID component We will call these task records. If the original tasks were components of a data
structure, the new task records take their place in the structure as a result of using the names of the
original tasks as names for the task record types (step 1) or task records (step 2).
Wherever a task was visble in P. now both the task and its 10 are visible as components of a task
record with the same name.
The SETXD entry and the local MYID variable are used to "Inform' a task of its own ID when it is
activated, and to store that 10.
The Ada semantics do not specify the order of task activation. Therefore at steps 1 and 2 accept
SETXO is inserted as the first statement of every task body;, in pass 2 task 10 components of all task
records are initialized before any task is informed of its 10 by a SET_1D entry call. This "holds up"
every task until all I0 components are initialized, thus avoiding the possibility that tasks in P might
attempt to access task 10 components that are uninitialized.
The purpose of steps 4-6 is to ensure that the actual value of the CALLERID parameter of any entry
call is the ID of the task issuing that call. This in turn requires that a subprogram must be able to
access the 10 of the task that called it so that if it issues an entry call it can pass this I0 to the called
task. (Note that a subprogram can be visible to, and thus called by, more than one task.) Hence the
TASK-.I parameter must be added to both subprograms and entries.

Correspondence: After pass 1, correspondences between text of P and new or modified text of P1
is a follows (text n P that is not affectsd by the transformationscorresponds to the same text In P1):
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A task object t in P corresponds to the task object component of the record with the same name, t, in
1; i.e.. t corresponds to t.TASK_O3. A task type t in P corresponds to a task type in P1 obtained by

modifying the declaration of t at step 1 above (called tTASK). The old and new subprogram and
entry declarations and entry calls correspond. The new variables MYID, entries SET_1D, calls to
SET_10, and new accept SET0ID statements have no correspondence in P.

4.1.1 EXAMPLES OP PASS I TRANSPORMAT MN

1. A tas# type declaration I translormed into & task type followed by a record type
Note. TI corresponds to TI.TASK.

ORIGINAL MT.? A.

task type TI Is
entry El:
entry E2 (I In INTEGER: . . .

end Ti:

task body TI is

begin

end il;

TRANSFORMED TEXT. PI:

task type T2_TASK Is
entry SET_1D (N In TASK_ID); entry El (CALLER_0ID in TASK_1D):
entry E2 (CALLER_1: in TASK_I0; I :in INTEGER; . .).

end TITASK;
task body T I_TASK Is

1YID TASKID ;

begin
accept SET_ID (N : In TASKIO) do

NYID := M:

end il..TASK;

type Ti Is
record

TASKOBJ : TiTASK:
ID : TASKIO:

end record;

2. All task object declarations become teak record object declarations:
Note: A.TASK corresponds to A.TASK. TASKOBJ.

ORIGINAL TEXT, ft.

A-TASK : TI;

_ ..., - ... .. .. . ... . .,,,, . .. .. " . .. ... ... .. ,'- .. . ... . .. .. .. . .. ... .,,, ... ...... I. .,,, , ... . ... . .. .
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ATASK :TI;

3. DOclarIatln at a single task are transformed into a task type and record type declaration, followed
by a record declaration:
Note:T1 corresponds to Ti. TASK08J. ONIG0INALTEXT, P-

task T I Is
entry El;
entry E2 (N Inb INTEGER; ..

end TI;

task body Ti Is

end Ti;

TRANSFORMED TEXT, P1:

task type TJASK is
entry SET..ID (N :In TASK..jO);
entry E I (CALLERIO in TASKJO);
entry E2 (CALLER_1D In TASK_..ID

N :Ini INTEGER; . ..
end Tl...TASK;

task body T1..TASK Is
MY_10 TASK_10ID

accept SET_10I (N . )do

MY..10 : a N;
end SET..ID:

end ilTiSK:

type T1..RECORD Is

TAS_06 :TiTASK;

ID : TASKID;
end record;

TI : Ti-.RECORD:

4. Pass 1 transformations modify subprogram and entry declarations and calls:

OR110INAL TEXT, P-

procedure PROCI Is

end PROCI;

function F1 (I : In INTEGER)

return SOMETYPE Is
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anid 111;

PROCI:

K:w 111 (J);

TI.EZ (N);

TRAKSM1MID T.T On:

procedure PROCI (NYID : In TASKJD) Is

end PROM;

funcition III (NYIO :In TASKJO!; I In INTEGER)

reunSONETYPE Is

end Fl.
PROU (MY..ID);
K :a F1 (MY_10I, J);
T1.TASKOBJ.E2 (Y_10, N):

4.2 INITIAUZATION OF TASK 101S

Pass 2 accepts as input the result of Pas 1 and insert statements to initiaize TASKID components
and variable&. When a task record is declared. the declaring scope must call the monitor to obtain a
new 10, initialize the 10 field of the task record, and inform the task of its 10. - If several tasks are
declared in the same declarative part then all of this 10 record components must be initialized before
letting any task proceed. otherwise one of the tasks could aces= an 10 component before it has been
initialized.

The Pmw 2 transformations. for initialzing the INa of statically declared tasks in each declarative part

1For each taok record declaratio a call to MONITOR. MEWTASK Is inserted; the string

paramete of this call is bound to the task record name and the TASKJO parameter is the
took record IC component It the declaration is in the declarative part of a subprogram or
block fth call Is place in the first statement position of that subprogram body or block; if
the declaration is In fth declarative part of a task body, the call is placed immediately
following the accept SET_1D statement of the task body.

2. Immnediately following all the calls to MONITOR. NEWiTASK inserted at step 1, calls to the
SET_10 entry of the taok component of each task record are inserted; the TASKIO0

f ~ parameter of each callIs bound to the 10 component of the same task record.

If tasks are declared as part of a complex structure (built out of arrays, records, and acesss types)
then Pas 2 uses iterative techniques to construct the initialization code for objects of that complex
type. E-g., task I0a occuring as components of arrays are initialized by for loops iterated over the
armay Index type. Details of these techniques are omitted.
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Notesr
Calls inserted by step 1 will inform the monitor of the identifier in the source text to be associated with
each task (for tracing and debugging) and will initialize all task record 10 components. The monitor
can then associate its own ID for a task with a name for the task in the source text. If a task occurs as
a value in a data structure. the name of the global data structure is used, so in general many l~s may
be associated with a source teW name. As a result of calls inserted at step 2. all tasks now "know"
thei 1D's, and have been "hold up" until all 1D components wre initialized.

Correspondence: Tedt to initialize took id's added by Pass 2, stepis I and 2 doe not correspond to
any kM in P.

4.5.1 DXAMU OP PAS TRANSPORMAI1NSM

P1 OaLARAT1V3 PART:

Ti: SOME-TASK-TYPE;
TASK.ARRAY :array (1-. 5) of SOI4E..ASKTYPE;.

type TWO.JASKS.JYPE Is
record

FrRST SOME..TASKTYPE;
SECOND SOME.,TASK.,TYPE;
N :INTEGER;

end record;
TWO-.TASKS :TWO-TASKSTYPE;

P2 IMMIDIAMUY POU.OWHO BEGIN:

-- Text to initialize all task ID components
MONITOR.NEWTASK ("Ti", MiID);
for I In 1. .5 loop

MONITOR .NEWTASK (-TASKJRRAY.TASK.ARRAY (I). ID):
end loop:

MONITOR.NEWTASC (-TWO_.TASKS.FIRST-, TWO..TASKS.FIRST.ID);
MON-ITOR. NEWTASK (-TWO.TASKS .SECONO", TWO..TASKS .SECOI4O.IO);

-- Text to Inform aft tasks of their 10 's
TI.TASK03BJ.SET..!D (T1);
for I In (i.-5) loop

TASKARRAY (I) .TASKOBJ .SETID (TASK..,ARRAY (I). ID);
end loop;
TWO...TASKS.FIRST.TASK...OBJ.SET_10I (TWO...TASKS.FIRST. ID);
TWOTASICS.SECON . TASK..OBJ .SET_.ID (TWO_.TASCS .SECONO. ID):

Note on Example. Due to Pms 1, SOME_.TASK_.TYPE Is now a task record type.

The situation in which a new task Is created and activated by an allocator requires special handling in
Pms 2. If P contains an access type accessing a type, T, with task type components, then P1 will
contain an access type accessing T which now has task record components. Allocation of an object
of type T must not be permitted to make an 10 component visible before it is initialized. Our approach
is to "hide" such allocators in function calls.
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Pam 2 contains a third step:

3. Whenever an accen type which designates a type containing task components is declared, Pass 2
inserts a new function declaration to be associated with the access type. This function will take as
parameter a value of the access type and return the same value. It initializes all task 10s in the
object designated by its parameter. Wherever an allocator is called in Pi to create a new object
containing task components, Pass 2 will substitute a call to this new function in P2 with the value of
the allcator call -a ft actual parameter.

Correspondence: The new functiorn and ca to them have no correpondence in P1. The
ulocator call In P1 correspond to the allocator call paranters of the new function calls in P2.

Example

PI:

type TWOTASKS.TYPE is
record

FIRST SOME-TASKTYPE;

SECOND: SOMETASKTYPE;
N INTEGER;

end record;

type TWOJASKSREF is
access TWO_TASKSTYPE;

TWOTASKSPTR :TWO_TASKSREF;

TWO_TASKSPTR :, new TWO_TASKS;

P2:

type TWOTASKSTYPE Is
record

FIRST : SOMETASKTYPE;
SECONO : SOMETASKTYPE:
N : INTEGER;

end record;

type TWOTASKSREF Is
access TWO_TASKSTYPE;

function NEWTWOTASKS (TEMP In TWO_TASKSREF) return
TWOTASKSREF Is

-- initialize TASKJOs in TEMP
begin

MONITOR.NEWTASK (. .
NONTTOR.NEWTASK (. .
TWO_TASKS.REF.FIRST.SETID (..
TWOTASKS.REF.SECON.SETrO (, .
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return TEMP;
end NEW_TWO_TASKS:

TWOTASKSPTR TWO_TASKSREF;

TWOTASKSPTR : NEW_TWO_TASKS (new TWOTASKS);

Notr on Exampie
ComIonena FIRST and SECOND wem originaly task typee In P, and have become task record types
In P a£ resul of Pm 1. When TIOTASKSPTR =n be referenced in P2, all of the I's in the
designated object wl have been Initialized.

4.3 MONITORING OF DEPENDENT TASKS

The monitor cannot detect some dead states without dependency information. For example, a task
moves from status BLOCK- WAIT to status RUNNING when all of its dependents declared in the block
have terminated. Consequently, a task may be dead as a result of a deadness among its dependents
which prevents them from terminating.

In order to deal with such situations, the preprocessor adds a variable designating a list of
(dependent) task ids to each block, i.e., each block in P' that corresponds to a block in P contains a
list of all tasks dependent on that block. The preprocessor also adds calls to the monitor entry.
AODOcPENCENTS, with this list as a parameter, whenever a new dependent task is activated. At
runtime this list is passed to the monitor by the executing task when a new dependent task is
activated. or when the executing task has reached the end of that block. Thus, in this present monitor
design, updating of dependents lists and checking for termination is done by the monitor itsalf.

Pass 3 declares a new local variable, DEPENDENT-IDS, at the beginning of every declarative part of
P2, except those in the new subprograms introduced in Pass 2. This variable designates a linked list
of all tasks directly dependent on the block where it is declared. An additional variable,
ALL_DEPENDENTS, is added to the outermost declarative portion of every task body and the main
program. These lists are modified only by calls to the monitor's ADDDEPENDENT entry. After every
NEWTASK call, Pam 3 inserts an ADDDEPENDENT call to the monitor with parameters: the ID of the
task executing the block, the I of the dependent task, the DEPENDENTIDS variable, and the
ALLDEPENDENTS variable.

Pass 3 of the preprocessor:

1. Adds the declaration, "DEPENOENTIDS : MONITORDATAPACKAGE. IDOPTR" at the
beginning of each declarative part of P2 except for the new subprograms whose
declarations were inserted by pass 2.

2. Adds the declaration "ALLDEPENDENTS MONITORDATAPACKAGE. ID_PTR" at
the beginning of the outermost declarative part of each task body.

3. Inserts the call MONITOR.ADD__DEPENDENT after each call to the monitor entry,
NEWTASK. The parameters are FATHER a) MY.D. S0ON ,) out parameter of
preceding NEWTASK cal, LIST1 a> OEPENDENT__IDS, LISTZ a) ALLDEPOENDENTS.

, -
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Notes. Tasks created by an allocator depend on the block where the access type was declared, so
their ID's must be added to the DEPENDENT-IDS list corresponding to that block. In P2 these
allocator calls are replaced by calls to a new function associated with the access type. This function is
declared immediately following the access type by Pass 2. It contains the appropriate NEWTASK
calls. Since pass 3 does not insert a declaration of a local DEPENDENTIDS,. . . in these function
bodies, the immediately global DEPENDENT _IDS variable is visible within these function bodies.
These will be the DEPENDENT _IDS variables associated with the declarative parts containing the
aces type declarations. Therefore the Pass 3 monitor calls to ADDDEPENDENT placed in the
function wil have as parameter the DEPENDENT __IDS variable for the block In which the access type
i declared.
If a select statement, say, In tak TI has a terminate alternhaIve, then the ID's .of al1 tasks directly
dependent on T1, or one of its inner blocks, must be passed to the monitor. The variable
ALL,.DEPENDENTS designates a list of exactly theee ID's

Correspondence: The text added to P3 In Pus 3does not correspond to text In P2.

4.4 RENDEZVOUS MONITORING

Pass 4 inserts calls to the monitor entries CALLING, ACCEPTING, SELECTING, START-RENDEZVOUS,
ENDRENDEZVOUS, ENDBLOCK, and END-TASK. These calls inform the monitor of direct and indirect
status changes, and associated information arising from rendezvous attempts.

The transformation uses strings derived from the source text identifiers as names of task entries.
These names are used to notify the monitor which entry of a task is being called by another task and
are crucial in the monitor's internal representation of rendezvous statuses. These entry name strings
must name exactly one entry in any given task: no entry can be represented by two different strings.
and no string can represent two different entries of the same task. A string could represent several
entries, as long as they are all in different tasks. An entry family requires a different string for each
member of the family. Finally, the transformation introduces arrays for storing and accessing the
names associated with entry families; details of these entry family name arrays are omitted.

4.4.1 THE CALUNG ENTRY

Calls to this entry are inserted in a task P immediately before ai unconditional, untimed entry call.
When a call to CALLING is executed, the monitor will change the status of the task to Calling. As soon
as this monitor call finishes and the next statement is executed, the task's actual status will be Calling.
Timed and conditional entry calls are not monitored because they do not result in the task changing
status (until the call has actually been accepted). The CONSUMER parameter is the ID of the task
making the call. i.e., the value of MYID. The SERVER parameter is the ID component of the called
task's task record. The ENTRYNAME parameter is the string created by the preprocessor naming the
called entry. The DEADLKFLAG parameter indicates whether evasive action should be taken to avoid
a blocked state.

Notes:

Examples:
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P&:

TI.TASK..OBJ.E1 (MY_1O):
TI.TASKOBJ.ENTRYFAMILY (EXP) (MYJD):
T1.TASKOBJ.E2 (MY..ID. PARAMETER);

P4:

MONITOR.CALLING (NY..JD. T1. -El-, DEAOLKFLAG):.
TI.TASK..OBJ.El (MY-10I);

MOMTORCALING(MY-ID.. T.JID, EMTRYAILY..STR (EXP). DEADLK-.FLAG):
Fl .TASKOBJ. ENTRY_.FAMILY(EXP) (MY.,.ID);
NOKXTOR.CALLIN. (MYIDTI.10DE2; OEADLK_.FL);
TI.TASKOBJ.E2 (MY_.ID. PARAMETER);-

4.4.2 THE ACCEPTING ENTRY

Pass 4 inserts a call to ACCEPTING immediately before each "simple" accept statement that is not a
select aitemnative (preprocessing of select alternatives is described in 4.4.3). The parameters are:
MYIO (server name), the preprocessor string naming the entry being accepted, and DEAD LK..FLAG.

Example:

P3:

accept El (CALLERID) do

P4:

MONITOR.ACCEPTING (MY..ID, WElK DEADLK..FLAG);
accept El (CALLER.JO) do

4.4.3 THE SEDLECTING ENTRY

Before executing a select statement a (server) task must inform the monitor of those entries that can
be accepted by that select statement. It must therefore evaluate the guards of the select alternatives.
including any delay or terminate alternatives. This evaluation must be done once. The resulting
values are used both to give the monitor the information associated with the new Accepting status (or
Select..terminate status) and to execute the select statement afterwards. Pass 4 inserts declarations
of new variables to hold the values of the guards, and text to evaluate the select guards and construct
the status information for the monitor.

Pass 4 executes the following text transformations for each select statement in P3:

1. The select statement is enclosed in the body of a new block statement.

2. Boolean variables TEMPI, TEMP2, ... are declared locally in the now block, one for

t2__
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each select alternative, and initialized to the guard expression of that alternative, or to
TRUE if there is no guard.

3. Boolean variables TEMPDELAY and TEMP-TERMINATE are declared locally after the
previous variables. TEMP_DELAY is initialized to TRUE if there is an else part. to the
disjunction of the T EMP variables corresponding to delay alternatives, or to FALSE if there
is no else part or delay alternatives. TEMP_TERMINATE is initialized to the TEMP variable
corresponding to the trminate alternative If there is one and to FALSE otherwise.

4. A variable ENTRY_LIST of type ENTRYPTR is declared locally and initialized to null.

5 Ada text to construct the list of entry names corresponding to open accept alternatives is
inserted at the beginning of the local block body (i.e., before the select statement). This
text is instantiated from a single text template and performs a computation as follows: If
TEMPOELAY is TRUE it does nothing; otherwise it builds a list of entry name strings
corresponding to the open accept alternatives and then calls the monitor entry,
SELECTING, with parameters: MYID, ENTRY LIST, TEMP TERMINATE,
ALLDEPENDENTS, DEADLKFLAG.

6. The boolean conditions in the select alternatives are replaced by the corresponding TEMP
variables.

Correspondence: The select statement in P4 corresponds to the original select statement in P3.
The new local block, declarations, and new text in P4 has no correspondence in P3, except that calls
to functions in the new text corresponds to the original calls in guards in P3.

Notes:
1. If TEMP_DELAY is TRUE the server task cannot enter a blocked state but wit) remain in

status Running.
2. TEMP_TERMINATE is declared even if there is no terminate alternative so that the

preprocessor can use asingle text template for computing the list of open entries.
3 TEMP_DELAY and TEMP_TERMINATE cannot both be true due to Ada rules for select

statements.
4. Construction of the list of entries proceeds as follows: ENTRYLIST is initialized to null;

then for each accept alternative with a true guard condition a new MON_ENTREC record
containing the string representing the entry is allocated. If the entry is part of an entry
family, its index expression is evaluated at this point (to correspond with the order of
evaluation in the Ada semantics). This record is inserted into the Its* designated by
ENTRYLIST.

Examples:

P3:

select
accept El (CALLERID : in TASKID) do

end El;
or

accept EZ (CALLER_0ID in TASK_ID);

...2
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: in INTEGER) do

end iEi:
end select;

select;
when FLAGI a>

accept El (CALLER_ID In TASKID) do

end il';
or

when F (X). > delay 10;
end select;

P4:
declare

TEMPI : BOOLEAN :• TRUE;
TEMP2 : BOOLEAN : TRUE;
TEMPOELAY : BOOLEAN :* FALSE:
TEMPTERMINATE : BOOLEAN := FALSE;
ENTRY-LIST : ENTRYPTR,
begin
if not TEMP_OELAY then

ENTRY-LIST :a null:
If TEMP1 then

ENTRY-LIST :a new ENTRY_.REC'(NAME > "El". NEXT a> ENTRYLIST):
end if;
if TEMP2 then

ENTRY-LIST :a new ENTRYREC'(NAME > "E", NEXT *> ENTRYLIST);
end If;
MONITOR.SELECTING (MY_1D, EITRYLIST, TEMP_TERMINATE.

ALLDEPENDENTS, DEAOLKFLAG);
end If;

select
accept El (CALLERID : in TASKID) do

end El;
or

accept EZ (CALLER_ID : in TASKID:
I : in INTEGER) do

end E2;
end select;

end;
TEMPI : BOOLEAN :a FLAG1:
TEMPE : BOOLEAN a F (X):
TEMPOELAY : BOOLEAN :• TEMP2;
TEMPTERMINATE : BOOLEAN • FALSE;

begin
if not TEMPDELAY then

ENTRY-LIST :a null;
if TEMPI then

ENTRY-LIST :u new ENTRYREC(NAME a> "El".
NEXT *> ENTRYLIST);

end If;

C--
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If TEMP2 then
ENTRY-LIST :a new ENTRYREC(NAME -0 "E24.

NEXT a> ENTRYLIST);
end If;
MONITOR.SELECTING(MY_1D. ENTRY-LIST. TEMPTERMINATE,

ALLDEPENDENTS);
end If;

select
when TEMPI >

accept EI (CALLER_ID) do

end El:
or

. when TEMP2 -0 delay 10:
end select;

end 11;
end;

Often text inserted by the preprocessor pass 4 can be omitted. In the first example above, none of
the TEMP variables for accept alternatives, nor the corresponding conditional tests on them, are
needed. The preprocessor does in tact make some optimizations on the use of the TEMP variables.

4.4.4 ENTRY START.RENOEZVOUS

Pass 4 inserts a call to this monitor entry at the beginning of every accept body, even those inside of
select statements. The parameters of the call are: CONSUMER => CALLERID (a parameter of the
entry call), SERVER => MYID. ENTRYNAME u> the name~string associated with the entry being
accepted.

Correspondence: This entry call has no corresponding code in P.

4.4.5 ENTRY ENO.RENOEZVOUS

A call to this entry is placed at the end of every accept body. The parameters of this call are:
CALLERIO, MYID, and the string associated with the entry accepted. This entry call does not
correspond to any code in P3.

Examples:

P3:

accept El (CALLER_ID : in TASKJD):

accept E2 (CALLERID : In TASKD10; I : In INTEGER; . . .) do

end E2;

P4:

-- i - - - - - - -
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accept El (CALLERID :in TASKJD) do
MOMITOR.STARTRENDEZVOUS (MY..ID. CALLER_10I, "El");
MONIrOR.ENo.RENDEZVOUS (t4Y_1D, CALLER_1D. *El*):

end El;

accept E2 (CALLER_10 In TASKID,) (I :In INTEGER;: .). do
MONITOR.STARTRENOEZVOUS (MYID, CALLER..ID. *E2");

MONITOR. ENO.RENDEZVOUS (NYID. CALLER.ID, OE2*);
end E2;

4.4.6 &MRY EDTASK

A call to tisl entry Is inserted at the end of every talk body. The parametes are XY_1D (the I0 of the
task Mea is completing), ALL,.OEPENOENTS (the 10's of all taks dependent on the completing taisk),
and OEADLK-FLAG. The value returned for DEAOLKFLAG will indicate whether or not the task wilt
cause a blocked state by completing. This entry call does not correspond to any code in P.

4.4.7 ENTRY EDO*LOCK

A call to this entry is inserted at t. end of each inner block (or subprogram) which has a declarative
part. The parameters are the same as for END-.TASK, except that the local OEPENDENT...IDS variable
takes the place of ALL_.DEPENDENTS. Again, this entry call does not correspond to any code in P3.

4.5 FUNCTION CALLS IN TASKING STATEMENTS

The above transformations are inadequate when parameters of tasking statements contain function
calls since evaluation of these parameters might also involve tasking.

Example.

iunctIon Fl (ARG: in INTEGER)
return INTEGER is

T3: SOMEASK_TYPE;

begin

end Fl;.

Tl.EZ (Fl (X);

P4:

function F1 (14Y..ID: in TASK..ID; ARG In INTEGER)
return INTEGER is
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T3: SONLTASK.TYPE;
DEPENOENTIOS : D0PTR;

begin
NONITOR.NEW..TASK (

NO0NITOR.ADO.DEPENDENT (

MONITOR.SET..ID

MONITOR. ENOBLOCK (NYJO.-DEPENDENTIDS, DEADLKFLAG);
end FI;

NONITOR.CALLING (NYID,0 Tl.rD. -E2-);
-A.

TI.TASKOSJ.E2 (NY_1D. F1 (NY_1O. X));

At point A I fte above examtple; TI is I status Calling In the monitor's picture. Howevr, when fth
call to Ft is executed, Ti could be put into status Block.Wait waiting for tasks dependent on F1 to
terminate. Currently, this will confuse the monitor and may lead it to falsely detect a global blocking
situation, or not detect an actual one. The preprocessor therefore moves all function calls out of the
tasking statements. This requires additional temporary variables to hold the values of parameter
expressions and intermediate values.

Examples:

P4:

MONITOR.CALLING (MYID, TI.10, -E2-):
rz.TASK..OBJ.E2 (IIY_.ZD. F1 (M14.. X)):

6 PS:

TEMPI :a F1 (MYID,. X);
MONITOR.CALLING (my-rD. TI.ID. -E2-):
T1.TASK..OBJ.E2 (MYID, TEMPI);
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5. CORRECTNESS OF DEADNESS DETECTION

In this chapter we outline an approach to proving the correctness of our runtime monitoring system.
A formal treatment of correctness with detailed proofs is beyond the scope of this paper. We attempt
here to indicate what needs to be proved and informal reasoning which can be formalized.

Correctness is taken to mean: (I) for any potential deadness error of the original program P there is
an equivalent potential deadnee error In the monitored program P; (ii) in any computation of P', if the
monitor detects a deadness error, it wit do so before that error occurs and that error will occur If the
compuMmt continuse normelly, (51) certain kinds of deadness wrons, including global blocking and
circular deadlock will always be detected

Note*
() meuw 6Wa the monitor does not intrfere with te set of potential deadnm errors of the monitored
program. (WI does not Im* that the monitor will detect every deadnes error, as defined in Section
2.2. but that any error it can detect in its picture will be a future state of P'. (iii) is a completeness
result.

5.1 NON INTERFERENCE

The preprocessing (Chapter 4) and addition of the monitor sets up a textual correspondence between
P and P. Declarations of subprograms and entries in P correspond to subprograms and entries with
the same name in P'; declarations of task types correspond to task types in P'; task objects of P
corresoond to task components of task record objects in P'; statements that are untouched by the
transformation correspond; calls to subprograms and entries in P correspond to calls to subprograms
and entries with the same names in P'; finally the corresponding is consistent (Section 2.3), in
particular, the block structure of P is preserved in P'. The monitor, calls to the monitor, and additional
object declarations and statements inserted prior to monitor calls do not correspond to text in P.

The following discussion is based on this correspondence between P and P'.

Claim 1. For every execution of P there is a corresponding execution of P' and conversely.

Notes: this depends on the assumptions (i) that all tasks of P have the same priority, (ii) on
properties of the correspondence whereby corresponding statements invoke the
same status change (if any) on corresponding tasks, and (iii) that all monitor
rendezvous terminate. Given an execution E of P. it is then possible to construct a
corresponding E' of P' by scheduling the runnable tasks so that corresponding
tasks execute corresponding code in the order of E; the monitor M is given super-
high priority. We note that every declaration and allocate statement of P
corresponds to a declaration or allocate of the same kind, so that at any point in E
and E' where correspondence has been established, corresponding tasks have
been allocated and activated.

Claim 2. In two corresponding computations of P and P', the sequences of status changes of
corresponding tasks, except for monitor rendezvous, are the same.

Notes: This requires noting that not only are the direct status changes of corresponding

ca. _____l_
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tasks the same, but corresponding tasks invoke the same indirect status changes
on corresponding tasks in executions that correspond. This latter results from
noting that corresponding entry calls are to entries with the same name.

Claim 3. If execution E of P corresponds to execution E' of P' then the only possible task in E' that
does not correspond to a task in E is the monitor M.

Notes: This depends on an analysis of the declarations Inserted by the preprocessing,
showing th any task ta could be invoked In P' other than M has code
corresponding to code in P In Us body.

Claim 4. For each potential deadnm error of P. P' has an equivalent potential deadness error, and

Notes: Let deadness error S occur In execution E of P. Let E' be a corresponding
execution of P' (Claim 1). Using Claim 2 and termination of Monitor rendezvous, all
tasks of E' that correspond to tasks in E will reach the status of their corresponding
task in S. At that point in E', the monitor M must be blocked in accepting status.
By Claim 3. the scheduling state of E' is equivalent to S.

The converse can be argued similarly by considering corresponding executions.

Note:
Claim 4 states that adding monitor to P does not interfere with P (see Section 2.3).

5.2 CORRECT PREDICTIVE MONITORING

Consider a monitored program P'. Recall that any execution of P' contains one task, the monitor M,
which does not correspond to a task in a corresponding execution of the unmonitored program P. A
crucial property of the preprocessing (Chapter 4) 'is that during an execution of P', any task t that
makes a direct change of status in attempting to rendezvous with a task other than M, will call the
appropriate entry of M before making that status change, and when t is returned to running status as
a result of completion of the monitor call, its next status change normally will be the one signalled.
We call this property of the preprocessing predictive monitoring. As a result of predictive monitoring,
the monitor's representation of the scheduling states of P' is always ahead of-the actual scheduling
state in any computation.

Claim S If at any point in an execution of P' the monitor M has an entry call from task t implying a
change of status from running to s, then after the monitor rendezvous with t terminates, t
will be in status running and if it continues normally its next status change (if any) is to s.

Notes: This depends on a case analysis of the clauses in the preprocessing. Various
complications must be noted, e.g. that any actual parameter expressions of entry
calls or select alternatives are "unwound" and their values assigned to temporary
variables prior to the monitor call. Note that the claim allows for the case where the
scheduler does not run t again in that execution.

Predictive monitoring enables the monitor to update its representation of the scheduling state to

.. .r . ..... ..". .. . .I III - ... . -7.
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reflect a future state under the asumption that runnable tasks wi eventually run. Deadness err
that are represented in the monitor therefore must eventually happen in the execution. The predictive
property enables the monitor to signal tasks to take evasive action before a deadness error actually
occurs.

.3.3 MONITOR CORRECTNESS AND COMPLETENESS

Three crucial properties of the monitor Imlmnainmust be proved: 1) all monitor entry calls
teminate; 01) the amitors repre sttion of scheduling stmip correctly tepreseto the scheduling
stats imnplied by any legal sequenice (I.e.. a sequenice tha can occur I a computaton) of monitor
en" cals from & P eproeseed program. 011) the monitor will detect my deadnesis error that is a

consqueceI of t rep eenOdin end tha tho ermr xinctd gl~a bloking end circular
deadlock. (Certa~n deadnes errrs, may not be adequatesly represened, end theefore not
detectable.)

Notes:
Arguments supporting these claims must be based on the implementation description given in
Chapter 3.
Note that a proof of 60i requires showing that indirect status changes implied by a direct change are
represented correctly when an entry call ia compleed..
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6. EVASIVE ACTION

In this chapter we outline some paradigm techniques for programming evasive action in the
monitored program. These paradigms use Ada exception propagation, and therefore differ from our
present Implementation and examples.

Notes:
The kcles provided by our monitor for evasive action depend on procedure parameters (e.g.
DEADLKFLAG parameter of CALLING because of deficiencies in te Adam compiler, similarly, the

example experiment given In Section 7.4does notuee exceptio.

It is assumed at Oe monitor may propagate a number of exceptions signfy"i the Imminent
occurrence of diferent kinds of deed tames, for wample:

GLOBALBLOCKTlUG. CIRCULAR-DEADLOCK,
OEPENDENTSLOCKEO, LOCAL-BLOCKING : exception

In most cases the monitor will propagate an exception to the final task whose status change will
complete a dead state. We may call this the "offending" task, although it may be no more of an
offender than other tasks who have already reached blocked statuses. In more sophisticated
monitoring systems, exceptions may be propagated to other tasks in the monitored system.

There are three paradigms for using the propagation of such exceptions in the source text to enable
the monitored program to take evasive action.

6.1 MINOR EVASION

The evasive action is taken and then the program proceeds exactly a normal (i.e., as it would have if
no deadness exception had been propagated from the monitor). This technique may be used in
cases where the imminent error may be avoided, e.g. by freeing a resource and delaying, and then
acquiring the resource again.

begin -- Block enclosing monitor call.
..NITOR.CALLING(NY_.D, SID, "E*); -- intention to call S

exception
when GLOBALBLOCKING ) -- Evasiveaction

end:
S.E; -- Continue to call S as planned.

6.2 MAJOR EVASION

A major evasion requires thp program to disrupt its normal course of action. A standard example
would be that the "offending" task reset its local data and return to some previous starting point.

Example:

°* -



42

loop

begin -- Monitor call and intended task action
MONITOR.CALLING (MYID, SID. *E"); -- are placed inablock;
S. E; -- Normal action is to call S.

exception
when GLOBALBLOCKING > -- Evasive action when ERROR is

end; -- propagated by the monitor call.
-- Do not call S after evasive action,
-- but continue here.

6.3 CATASTROPHE

In a catastrophe thee Is no hope of "the offending tuik(s)" continuing to function usefully. If this
kind of error Is signalled the offender will simply report diagnostics and possibly transmit warnings to
other tasks in the program. The relorting can be based on "questioning" the monitor.

Example:

task body T is
begin" °

MONITOR.CALLING (MYY0. S_ID. "E'):
S.E;

exception
when GLOSALBLOCXNG ->

Report conditions and then die gracefully, do not continue.
end T;

F

I
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7. EXAMPLES

In this chapter we give examples of the pro-processing transformation, of the monitor's output
describing deadness errors, and of evasive action.

7.1 A DINING PHILOSOPHERS PROGRAM

The following example is the version of the dining philosophers problem with a potential blocking
error given by Hors In his paper on Communicating Sequential Processes. The example gives the
original Ada text and the preprosed text. The output comments from the monitor describing the
blockingerror when t occurred we also given.

Blocking can occur as folow.

All five philosophers can enter the room, sit down at the table and pickup one fork; then all
forks will be in accepting status waiting for a PUTDOWN, while all philosophers will be in
calling status having called PICKUP for their second fork, and the table will be waiting for
either of its entries to be called.

Whether or not this situation will happen depends on the underlying scheduling. The error may never
occur or may occur almost immediately, depending on the runtime task supervisor. This is illustrated
by the delay statements. In the Philosopher task body. If the delay before picking up the second fork is
removed, the blocked state will never occur when the program is run with the task supervisor package
at Stanford; with this delay, the tasks block before any philosopher eats.

with OTTYIO;
use DTTYIO:

procedure ROOM Is -- The cast of actors: FORKS.
pragma MAIN. -- PHILOSOPHERS, and TABLE.

task type FORK is
entry PICKUP.
entry PUTDOWN;

end FORK;

task TABLE is
entry SITDOWN (I : out INTEGER);
entry GETUP (I : In INTEGER);

end TABLE:

task type PHILOSOPHER:

type SETOFJORKS is array (0 .. 4) of FORK;
FORKS : SETOFFORKS:

-- The scripts. the bodies of the actors.

task body FORK Is
begin

6loop
accept PICKUP;

t2

.
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accept PUTDOWN;
end loop;

end FORK;

task body TABLE Is

type SEATARRAY Is array (0 .. 4) of BOOLEAN;
SEATS : SEATARRAY :- (others a) TRUE);

-- Tro means unoccupied.
begin

loop

accept SITOOWN (I out INTEGER) do
for 3 In 0..4 loop

I :a 3;
exit when SEATS (j);

end loop;
SEATS (I) :u FALSE;

end:
or

accept GETUP (I in INTEGER) do
SEATS (I) := TRUE;

end;
end select.

end loop;

end TABLE;

task body PHILOSOPHER is
SEAT : INTEGER;

begin
loop

delay 1; -- Delays are for thought. If a large enough
TABLE.SITDOWN (SEAT); -- delay is placed between picking up the
FORKS (SEAT)..PICKUP: -- two forks then the blocked state occurs;
delay 2; -- f not, the philosophers don't block.
FORKS ((SEAT + 1) mod 5).PICKUP:

-- This illustrates the dependence of
-- the error on the runtime supervision.

delay 1;
FORKS (SEAT).PUTDOWN;
FORKS ((SEAT + 1) mod 5).PUTDOWN;
TABLE.GETUP (SEAT);

end loop:
end PHILOSOPHER;

SOCRATES, PLATO. ARISTOTLE. MARX. RUSSELL-: PHILOSOPHER:

begin -- The five forks, five philosophers, and the
null; -- table are all activated at this point.

end ROOM;
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7.2 THE PREPROCESSED AND MONITORED DINING PHILOSOPHERS

The source code of the Dining Philosophers programi after pre-processing is given. The reader
should compare this version with the original text in Section 7.1 and with the descriptions of pre-
processing in Chapter 4.

with MO0NITOR_.DATA_.PACKAGE; us* MON ITOR_.DATA..PACKAGE;
with DTTY..10.
use OTTY..IO:
-- The cast of actors:- FORKS, PHILOSOPHERS, and TABLE.
procedure ROOM- Is

-- The DEADLOCK MONITOR itself.

task 140NITOR Is

read:
task body MONITOR Is.

- Uses MONITOR BASE PACKAGE
end MONITOR;

pragma MAIN;
-- Variables and new type declarations are inserted by Pass?7, (Section 4. 7)
-- to introduce task ids, compare with declarations in Section 7.71.
MYJOD constant TASK..ID :a 0;
MON-.DEPEND1D : D0PTR;
MON_.LIST :ENTRY-PTR;
MON...DEADLK-FLAG :BOOLEAN;

task type MtOTYPE..FORK Is
entry SET_.ID (N In INTEGER);
entry PICKUP, (CALL-10I :in INTEGER);

*entry PUTDOWN (CALLID :In INTEGER);
*end MONTYPEJORK;

type FORK is
record

* TSKOBJ : NONTYPEJORK;
ID :INTEGER;

end record:

task type MONTYPETABLE Is
entry SETID (N :in INTEGER);
entry SITDOWN (CALL_.ID :In INTEGER: I :out INTEGER):
entry GETUP (CALL...I :In INTEGER: I :in INTEGER);

end MONTYPETABLE;

* type MONRECTABLE Is
record

TSKOBJ :MONTYPETABLE;
ID :INTEGER;

end record;

TABLE MONREC-TABLE;



task type MONTY PEPH ILOSOPHE R Is
entry SET_10I (N In INTEGER);

end;

type PHILOSOPHER Is
record

TSKOBJ :MONTYPEPHILOSOPHER;
ID : INTEGER;

end record;

type SET..OF-.FORKS Is -array (0 .. 4) of FORK;
FORKS.: SET.0FFORKS;

-- The scripts. the bodies of the actors

task body MONTYPEJ.ORK Is
9YID : INTEGER;
MON_.DEPEND1 ID_.PTR;
MON_.LIST :ENTRY*.PTR:
MON...DEALKFLAG :BOOLEAN:
ALL-DEPENDENTS ID...PTR;

begin
accept SET_1O (N in INTEGER) do

-- Task waits until its 1D is initialized
-- (S eCtlon 4. 1)

MY-10I := N;
end;

loop

MONITOR.ACCEPTING(MYID, -PICKU4. MONODEAOLKFLAG);
accept PICKUP (CALL..ID :in INTEGER) do

MONITOR.START_.RENOEZVOUS (CALL..IO. MYIO. "PICKU-):
MONITOR.EN..RENDEZVOUS (CALLID. MYID. "PICKU");

end;

MONITOR.ACCEPTING (MY_10. -PUTDO". 140N....EADLK_.FLAG);
accept PUTDOWN (CALLJOD In INTEGER) do

MONITOR. START..RENDEZVOUS (CALLID. MY..ID. -PUTDO-);
MONMITOR.END..RENOEZVOUS (CALLIO. MYJD. "PUTDO");

end;

end loop;

MONITOR. ENDTASK (MY_1D. MONDEPENOD1. MON_..EADLKFLAG);
end MONTYPE-FORK:

task body MONTYPETABLE is
MYI10O INTEGER:
MONODEPEND_1O :ID.PTR;
MONLIST :ENTRY-PTR;
MON..EALK-FLAG :BOOLEAN:
ALL-.DEPENDENTS :ID..PTR;

type SEATARRAY Is array (0 .. 4) of BOOLEAN.
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SEATS SEAT-.ARRAY :a (others m> TRUE):
begin

accept SET._ID (N :In INTEGER) do
MY-1I0: N;

end;-
loop

If not FALSE then
M4ON-.LIST :a null;
If TRUE then

M4ON-LIST :m new 14ON-..ENT-.REC (NAME =*SITDO*,
NEXT v> MON..LXST):

end If;
if TRUE then

NONLIST :- new 14NEN TREC(NANE m*GETUP*,
NEXT 0> NON..LIST);

end If;
MONITOR.SELECTING(MY.ID, MO0N_.LIST. FALSE,

MONODEPEND_ID, MON...DEADLKFLAG):
end If;
select

accept SITDOWN (CALLIO in INTEGER.
I out INTEGER) do

M4ONITOR.START..RENDEZVOUS(CALtJD1. MYID. 'SITDO"):
for J In 0. .4 loop

I :* J;
exit when SEATS(J);

end loop;
SEATS(I) :* FALSE;
MONITOR.ENDRENDEZVOUS (CALLJO. MY_1D. "SITDO");

end;

or
accept GETUP (CALLID :In INTEGER;

I :in INTEGER) do
MONITOR.STARTRENDEZVOUS (CALLID. MY..ID. -GETUP-);
SEATS(l) :* TRUE;
M4ONtTOR,.EN4ORENOEZVOUS (CALL..ID, NY..I. OSITOO"):

end;

end select:

end loop;

MONITOR.ENDTASK (MYID. MON_.DEPEND..ID. MON_.DEALKFLAG);

end MONTYPE.,TABLE;

task body MONTY PE_.PH ILOSOPHE R Is
MYID INTEGER;
MON..EPENDID :ID..PTR;
MONLIST :ENTRYPTR;
MON-DEAOLK-FLAG :BOOLEAN:
ALL.,DEPENDENTS :IDPTR;
SEAT :INTEGER;
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bein'
accept SET-.ID (N In INTEGER) do

MY..JD :N:
end;
loop

delay 1;

MONITOR.CALLING (MYID.. TABLE.ID. -SITDO-. MON_.DEADLKJFLAG);
TABLE.TSKOBJ.SITDOWN (MY_1DSEAT);

NONITOR.CALLING (NY_10, FORKS(SEAT),IO. -PICKU-, MON..DEADLK...FLAG);
FORKS (SEAT) .TSKOSJ.PICKUP (NY...I):
delay 2;

NONITOR.CAU.XNG (NYID,. FORKS ((SEAT + 1) .o0 5).10. "PICKU".
MON-..EAOLK..FLAG):

FORKS.((SEAT + 1). moAd 5).TSKOBJ.PICKUP (NY_10I);
delay 1:

MONITOR.CALLING(MYID. FORKS (SEAT). ID.-PUTDO" .MON_.DEADLK_.FLAG);
FORKS (SEAT) .TSKOBJ .PUTDOWN (MYID);

MONITOR.CALLING (MY..JD, FORKS ((SEAT41) mod 5).ID. "PUTDO".
MON...EAOLK_.F LAG);

FORKS ((SEAT+1) mod 5).TSKOBJ.PUTDOWN (MYID);

MONITOR.CALLING (MY..ID. TABLE.IO, -GETUP-. MONDEADLK..FLAG);
TABLE.TSKOBJ.GETUP (MYID, SEAT);-

end loop;

MONITOR.END..TASK (MYID, MON....EPEND1. MON....EADLKFLAG);

end MONTYPE-PHILOSOPHER;

SOCRATES :PHILOSOPHER;
*PLATO :PHILOSOPHER;
ARISTOTLE :PHILOSOPHER;
M4ARX : PHILOSOPHER;-
RUSSELL :PHILOSOPHER:

begin

-- Monitor calia inserted by Pass 2 (Section 4.2) to initialize all task ids in task records,
-- and track task dependencies (Section 4.3)
MONITOR.NEWTASK (-TABLE-. TABLE.ID);
MONITOR.ADO.DEPENDENT (MYIO. TABLE. ID, MON....EPENOJrD, ALL_..DEPENDENTS);
for MON-11 in 0 .. 4 loop

MONITOR.NEWTASK (-FORKS-. FORKS(MON_11).ID);
MONITOR.ADD_.DEPENDENT (MY..ID. MON_.DEPEND..ID. FORKS (MON_11).ID);

end loop:
?ONITOR.NEWTASK ("SOCRA-. SOCRATES. ID);
MONITOR.AOODEPENOENT (MY...I. MON_.DEPENOJID, SOCRATES.ID);
MONITOR.NEWTASK (-PLATO", PLATO. ID);
MONITOR.ADODEPENOENT (MY_1O. MON_.DEPENDJD. PLATO. ID);
M4ONITOR.NEWTASK ("ARIST". ARISTOTLE.ID):

MONITOR.ADO.DEPENDENT (MYJO, MONOEPENDID, ARISTOTLE. ID);

CA __
t2L
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MONITOR.NEWTASK ("MARX ",MARX..ID);

MONITOR.ADD..DEPENOENT (MY..ID. MON-.DEPENDID, MARX. ID):
MONITOR.NEWTASK ("RUSSE-, RUSSELL.ID):
MONITOR.ADD...EPENOENT (MY..IO. MONDEPEND-10. RUSSELL. ID);

-- SETJD calls to inform each task of its ID inserted by Pass 2 (Section 4.2).
TABLE.TSKOBJ.SET_ID (TABLE. ID);
for MON_1.1 In 0 .. 4 loop

FORKS (MON_.Il) .TSKOBJ .SET.,ID (FORKS (MON..Il) .ID);
end loop:
SOCRATES.TSKOBJ.SET...I (SOCRATES. ID);
PLATO.TSKOJ.SET...I (PLATO. ID);
ARISTOTLE.TSKOBJ .SET_.ID (ARISTOTLE.ID);
MARX. TSKOBJ .SET..ID (MARX. ID):
RUSSELL. TSKOBJ .SETID0 (RUSSELL. ID);
null:

MONITOR. END_.TASK (MY_1O, MON..DEPEND..ID, MON_.DEADLK..FLAG);
end ROOM;

7.3 DIAGNOSTIC DESCRIPTION OF THE DINING PHILOSOPHER'S DEAD STATE

Below is the description of a global blocking state given by the monitor.

Key: In descriptions of Accepting status, each entry name is followed by it's queue size (an integer)
and a " I" if the task is in a status accepting that entry.

*MON* GLOBAL DEADNESS HAS BEEN DETECTED
*MN* TASK INFORMATION

O MAIN is block..waiting on~ 11 tasks.
Its entries are:

<NONE>
Its father is: -1

-- This description indicates that the table task was in accepting status.
-- accepting either entry, and neither entry had been called.

I TABLE is accepting
Its entries are:

SITDO (0-) GETUP (O-)
Its father is: 0

-- Fork indicated as task 2 is in status accepting PUTDOWN which no callers.
-- while some task has called PICKUP.

2 FORKS is accepting
Its entries are:

PUTDO (O-) PICKU (1)
Its father is: 0

3 FORKS is accepting
Its entries are:
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PUTDO (0-) PICKU (1)
Its father is: 0

4 FORKS is accepting
Its entries are:

PUTOO (0-) PZCKu (1)
Its father is: 0

5 FORKS is accepting
Its entries are:

PUTOC (0) PICKU (1)
Its father is: 0.

a FORKS Is accepting
Its entries are:

PUTOG (0-) PXCKU (1)
Its father is: 0

-- SOCRATES is task 7; ft has called task 3 (a fork) entry PICKUP;
we can see above that task 3 is accepting PUTDOWN.

7 SOCRA is calling task number 3 at entry PICKU
Its entries are:

<NONE'
Its father is: 0

8 PLATO is calling task number 4 at entry PICKU
Its entries are:

<NONE>
Its father is: 0

9 ARIST is calling task number 5 at entry PICKU
Its entries are:

<NONE>
Its father is: 0

10 MARX is calling task number 8 at entry PICKU
Its entries are:

<NONE>
Its father is: 0 -

11 RUSSE is calling task number 2 at entry PICKU
Its entries are:

(NONE>
Its father Is: 0
M0NO* end of dead state description.

7.4 THE EVASIVE ACTION PHILOSOPHER TASK

The following is an example of a philosopher task with additional evasive action capability. If the task
receives a warning from the monitor upon informing it that the next action is to pickup its right hand
fork, the evasive action will be to putdown the lefthand fork. It will then attempt to eat again as before.A _ _ _ _ _ _ _ _ _ _



This can be programmed using paradigm 6.1, Section 6.It Is assumed that this source text will be
preprocessed and monitor calls placed as usual, including the evasive action text

task body PHILOSOPHER Is
SEAT :INTEGER:

begin
loop

delay 1:
TABLE.SITDOWN(SEAT);t
FORKS(SEAT) .PICKUP;
delay 1;
begin

MONITOR. CALLING (Y..D, FORKS ((SEAT + 1) mod 5).ID OPICKUPO);
-. This call might propagate GLOSAL..,SLOCKING.

exception
when GLOSAL..BLOCKING 0)

FORKS(SEAT) .PUTDOWN:
-- Evasive action: put down left hand fork.

FORKS(SEAT-).PICKUP:,

end;-- Try to pick up both forks again.

FORKS((SEAT + 1) mod 5).PICKUP:
-- May get same error again here.

delay 1;
FORKS( SEAT) .PUTDOWN:
FORKS ((SEAT +1) mod 5).PUTDOWN;
TABLE.GETUP(SEAT):

end loop;
exception

when GLOBAL.BLOCKING a>
-- The evasive action did not solve the problem. so degrade gracefully.

end PHILOSOPHER;

Since the Adam- compiler does- not implement exception propagation during task rendezvous (e.g.
rendezvous with the monitor task), evasive action in our experiments uses the value of a parameter,
MONDOEAD...LAG. The evasive action is inserted after the program has been preprocessed since we
do not want the evasive action monitor calls to be monitored

task body MONTYPPHILOSOPHER Is
MY..ID: INTEGER:
M0N..DEPEND..ID :ID...PTR:
MON..LIST :ENTRYPTR;
MONDEADLK_.FLAG :BOOLEAN;
OUTERO.EPENOENTS :ID-.PTR renames 140N_.OEPENO..ID;
SEAT INTEGER:

begin
accept SET..,I (N :in INTEGER) do

* MY-10 :8 N;
and;
loop

delay 1;

MONITOR.CALLING(MYJD, TABLE.ID, -SITDO-. MON..OEADLK_.FLAG);
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TABLE.TSKOBJ .SITOOWN(MY_1O.SEAT);

1MONITOR.CALLING(MY-10. FORKS(SEAT) .10.PICKU-,MON...EAOLK..YLAG):
FORKS (SEAT) .TSKOBJ.PICKUP (MY-ID);
delay 1;

MONITOR.CALLING(MY-10I, FORKS((SEAT + 1) mod 5).ID, WPICKU".
MON_,DEADLKFLAG):

If MON.,DEADLK..FLAG then
NONXTOR.TRACE (ALL..TASKS. TRUE);
NONITORA.NBLOCK (NYJO);

NONITOR.CALLING (14Y_10 FORKS(SEAT).1D.
*PUTO .ONDEADLK_.FLAG);

FORKS (SEAT).TSKOBJ.PUTDOWN (1NY,10);

NONITOR.CALLING (NY_1D. FORKS(SEAT) .10,

FORKS (SEAT) .TSKOBJ.PICKUP (MY-IO):-PCU.MNEDKFA

end If:

MONITOR.CALLING(MYID. FORKS((SEAT + 1) mod 5).ID. -PICKU-.

MONODEAOLKFLAG):

FORKS('(SEAT + 1) umad 5).TSKOBJ.PICKUP(MY_1O):
delay 1:

!4ONITOR.CALLING(M10.I, FORKS(SEAT) .ID,WPUTO-. MON_..EADLK..FLAG):

FORKS (SEAT) .TSKOBJ.PUTDOWN (MY-10):

MONITOR.CALLING(MY-1D. FORKS((SEAT + 1) mod 5). ID, PUTDO".
140 i..E AD LKF LAG )

FORKS ((SEAT.1) mod 5).TSKOBJ.PUTDOWN (MYJD);

MONITOR.CALLING (MY ID. TABLE.ID, -GETUP-. MON.DEADLKFLAG);
TABLE.TSKOBJ.GETUP (MYID ,SEAT);

end loop:

MONITOR. NDTJASK (MYID,. MONDEPEND_ID. MON..DEADLKFLAG);

end MONTYPE-PHILOSOPHER;

7.5 ACTION OF DINING PHILOSOPHERS WITH EVASIVE ACTION

Below is a trace of activity by the evasive version of the dining philosophers. First the monitor
description of an imminent dead state Is given. A philosopher task is warned, and a trace of its
evasive action and subsequent "normal" activity then follows.

Key: See example 7.3.

OM0NO GLOBAL DEADLOCK HAS BEEN DETECTED
00ION06 TASK INFORMATION
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0 MAIN is block..waiting on 11 tasks.
Its entries are:

<NONE>
Its father is: -1

1 TABLE is accepting
Its entries are:

SITOO (00) GETUP (0-)
Its father is: 0

2 FORKS is accepting
It$ entries are:

MOTO '(00) PICKO (1)
Its father is: 0

3 FORKS is accepting
Its entries are:

PUTDO (0-) PICKU (1)
Its father is: 0

4 FORKS is accepting
Its entries are:

PUTDO (0-) PICKU (1)
Its father is: 0

5 FORKS is accepting
Its entries are:

PUTDO (0-) PICKU (1)
Its father is: 0

6 FORKS -is accepting
Its entries are:

PUTDO (Q-) PICKU (1)
Its father is: 0

7 SOCRA is calling task number 3 at entry PICKU
Its entries are:

<NONE>
Its father is: 0

8 PLATO is calling task number 4 at entry PICKU
Its entries are:

(NONE>
Its father is: 0

9 ARIST is calling task number 5 at entry PICKU
Its entries are:

<NONE)
Its father is: 0

10 M4ARX is Calling task number 6 at entry PICKU
Its entries are:

(NONE>
Its father is: 0
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-- RUSSELL will be the philosopher task receiving the monitor warning.

11 RUSSE is calling task number 2 at entry PICKU
Its entries are:

(NONE>
Its father is: 0

*'MON** end of dead state description.

*OTRC- call of monitor entry CALLING.

The consumer is 1.1 RUSSE. The server is 6 [FORKS].. The entry is [PUTDOJ.

-* This Indicates that RUSSELL is taking evasive action and is putting down the lefthand fork
intead ofAWtomwpting to I&, up th~dgh0Waad orJA NoQMthat the monitor call
to UNBLOCK, indicatng evaeive action. is not traced, but must already have been called

-- so that the monitor's "picture is correct.

**TRC** call of monitor entry STARTRENDEZVOUS.
The consumer is 11 (RUSSE]. The server is 6 [FORKS]. The entry is [PUTDO].

°*TRC** call of monitor entry ENDRENDEZVOUS.
The consumer is 11 (RUSSE]. The server is 6 [FORKS].

-- RUSSELL has now put down his left fork.

OOTRC** call of monitor entry CALLING.
The consumer is 11 (RUSSE]. The server is 6 [FORKS]. The entry is [PICKU].

-- RUSSELL now attempts to pickup the lefthand fork again!
-- However he will be behind MARX on the entry queue.

"*TRC0* call of monitor entry ACCEPTING.
The server is 6 [FORKS]. The entry is [PICKU].

-- A FORK, task 6, is the only unblocked task.

0TRC call of monitor entry STARTRENDEZVOUS.
The consumer is 10 [MARX ]. The server is 6 [FORKS]. The entry is [PICKU].

"" Now MARX can pickup his righthand fork, which was RUSSELL's lefthand fork.

**TRC** call of monitor entry ENDRENDEZVOUS.
The consumer Is 10 (MARX ]. The server is 8 [FORKS].

OOTRCOO call of monitor entry ACCEPTING.
The server is 6 [FORKS]. The entry is [PUTOO].

*TRC** call of monitor entry CALLING.
The consumer is 10 [MARX 3. The server is 5 [FORKS). The entry is [PUTDO].

-- Now MARX is finished eating and prepares to put down his forks.

**TRC** call of monitor entry STARTRENDEZVOUS.
The consumer is 10 [MARX 3. The server is 5 [FORKS). The entry is [PUT0..
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OOTRCOO call of monitor entry ENDRENOEZVOUS.
The consumer is 10 [MARX ]. The server is 5 [FORKS).

OOTRCO call of monitor entry CALLING.
The consumer is 10 [MARX ]. The server is 6 [FORKS). The entry is [PUTDO).

**TRC8* call of monitor entry ACCEPTING.
The server is 5 (FORKS]. The entry is (PICKUJ.

**TRCO call of monitor entry START_,RENOEZVOUS.
The consumte, is 10 [MARX 3. The server is 6 (FORKS]. The entry is (PUTDOJ.

OOTRCO call of monitor entry ENO..RENDEZVOUS.
The consumr is 10 (MARX ]. The server is 6 (FORKS].

OOTRCOO call of monitor entry CALLING.
The consumer is 10 (MARX ). The server is 1 (TABLE). The entry is [GETUP).

**TRC** call of monitor entry ACCEPTING.
The server is 6 [FORKS). The entry is [PICKU).

*TRC** call of monitor entry START..RENDEZVOUS.
The consumer is 9 [ARIST). The server is 5 (FORKS). The entry is [PICKU).

-- ARISTOTLE gets his righthand fork and starts eating.

0TRC** call of monitor entry START_.RENDEZVOUS.
The consumer is 10 [M4ARX ]. The server is 1 [TABLE). The entry is [GETUP].

-- Now MARX has left the table.

The trace output continues onl indefinitely.
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